KARADENİZ TEKNİK ÜNİVERSİTESİ

SAMSUN, ORDU, GİRESUN, TRABZON, RİZE, ARTVİN, GÜMÜŞHANE VE BAYBURT İLLERİ İÇİN ÖNERİLEN KATI ATIK DÜZENLİ DEPOLAMA ALANLARININ SİSMİK VE DEPREMSELLİK AÇIDAN İNCELENMESİ

Prof. Dr. Hakan KARSLI (Jeoloji Yüksek Müh.) **Prof. Dr. Nilgün Lütfiye SAYIL** (Jeoloji Yüksek Müh.)

Yrd. Doç. Dr. Ali Erden BABACAN (Jeoloji Yüksek Müh.)

<u>Hazırlanma Tarihi</u>

30 Mayıs 2017

DOKAP BÖLGESİ (Artvin, Bayburt, Giresun, Gümüşhane, Ordu, Samsun, Trabzon) İLLERİ DÜZENLİ DEPOLAMA ALANLARI İÇİN YER TESPİTİ ÇALIŞMASI VE ALTERNATİF KATI ATIK BERTARAF SİSTEMLERİ ARAŞTIRMA PROJESİ

SİSMİK VE DEPREMSELLİK ANALİZLERİ

HAZIRLAYANLAR

Proje Danışmanı	Prof.Dr. Hakan KARSLI	•••••
Proje Danışmanı	Prof.Dr. Nilgün Lütfiye SAYIL	
Proje Danışmanı	Yrd.Doç.Dr. Ali Erden BABACAN	

Trabzon 2017

İÇİNDEKİLER

S.NO

İÇİNDEKİLER				
ŞEKİLLER DİZİNİ				
TABLOLAR DİZİNİ				
1.	JEOFİZİK ÇALIŞMALAR	1		
1.1.	Depremsellik Analizleri.	1		
1.1.1.	Bölgesel Jeoloji ve Stratigrafi	1		
1.1.2.	Bölgenin Sismotektoniği	1		
1.1.3.	Deprem Oluşumları	6		
1.2.	Deprem Verilerinin Derlenmesi	8		
1.3.	Aletsel Dönem Depremlerin Zaman Dağılımları	12		
1.4.	Deprem Oluşum Modelleri	14		
1.4.1.	Poisson Model	15		
1.4.2.	Magnitüd-frekans İlişkisi	16		
1.5.	İnceleme Alanındaki Depremsellik Çalışmaları	18		
1.5.1.	İnceleme alanının tümü için magnitüd-frekans ilişkisi ve deprem olasılığı	18		
1.5.2.	Samsun İli Depremselliği	24		
1.5.3.	Ordu İli Depremselliği	27		
1.5.4.	Giresun İli Depremselliği	30		
1.5.5.	Trabzon İli Depremselliği	33		
1.5.6.	Artvin İli Depremselliği	36		
1.5.7.	Gümüşhane İli Depremselliği	39		
1.5.8.	Bayburt İli Depremselliği	42		
1.6.	İncelenen Alanın Tümü için Deterministik Deprem Tehlikesi	45		
2.	SİSMİK VE ELEKTRİK ÖLÇÜM ANALİZLERİ	48		
2.1.	Sismik ve Elektrik Veri Toplama	50		
2.2.	Sismik ve Elektrik Verilerin Değerlendirilmesi	50		
2.2.1.	Dinamik–Elastik Parametreler	51		
2.3.	Sismik ve Elektrik Verilerden Elde Edilen Bulgular	57		
2.3.1.	Samsun İli	60		
2.3.2.	Ordu İli	65		
2.3.3.	Giresun İli	67		
2.3.4.	Trabzon İli	73		
2.3.5.	Gümüşhane İli	76		
2.3.6.	Bayburt İli	80		
2.3.7.	Artvin İli	84		
3.	SONUÇLAR ve ÖNERİLER	89		
3.1.	Depremsellik Analizlerinin Sonuçları	89		
3.2.	Sismik ve Elektrik Analizlerin Sonuçları	91		
4.	KAYNAKLAR	98		
5.	EKLER	102		

Şekil 1.	Doğu Pontid Orojenik Kuşağı'nın ana tektonik-litolojik birliktelikleri; 1. Palaozovik Metamorfik temel 2. Palaozovik granitler 3. Serpantinit 4.								
	Avrismanis Mesozovik ve Senozovik kavaclar 5. Platform Karbonatlar								
	6 Ana Mesozovik tortul kavaclar. 7 Kretase ve Fosen vav volkanikleri								
	8 Üst Kretase ve Eosen vav granitleri 9 Kaldera ve domlar 10								
	Ortogonal örtü ve sürüklenme kuvrımları 11 Doğrultu-atımlı fay 12								
	Ters Eav 13 Normal fay KAE: Kuzey Anadulu Eav KDAE Kuzey								
	Doğu Anadolu Fayı (Eyüboğlu ve diğ 2007)	3							
Sebil 2	Doğu Anadolu Fayı (Eydooglu ve dig., 2007) Doğu Pontid Orojenik Kuşağı Kuzey Zonu'na ait stratigrafik kolon	5							
	kesiti (Güven, 1993) 4								
Şekil 3.	Anadolu ve çevresinin levha tektoniği modeli (Erdik ve diğ. 2014'den değiştirilmiştir). 5								
Şekil 4.	Anadolu ve çevresinde aletsel dönemde hasar oluşturmuş kuvvetli ve büyük depremler (KOERI)	7							
Şekil 5.	A.1500 km uzunluğundaki KAFZ. B. Fay boyunca olan tarihsel								
,	depremler (Ambraseys, 1970'den değiştirilmiştir)	7							
Şekil 6.	İnceleme alanını kapsayan Türkiye'nin doğusundaki tarihsel depremler								
-	(M.Ö. 2100-M.S. 1900)	9							
Şekil 7.	Türkiye için belirlenen magnitüd dönüşüm bağıntıları. R; ilişki katsayısı,								
	σ; standart sapma (Aydın, 2016)	11							
Şekil 8.	Çalışmada kullanılan depremlerin(1900-2016) episantr dağılımları.	11							
Şekil 9.	a) İnceleme alanındaki depremlerin (Ms≥3.0) yıllık sayıları, b) bu								
	depremlerin kümülatif sayılarının yıllık dağılımı	13							
Şekil 10.	a) İnceleme alanındaki depremlerin (Ms≥4.0) yıllık sayıları, b) bu								
	depremlerin kümülatif sayılarının yıllık dağılımı	14							
Şekil 11.	Tüm alanda MS≥3.0 olan olaylar için EKK yöntemi ile elde edilen.								
~	magnitüd-frekans ilişkisi. R; ilişki katsayısı	19							
Şek1l 12.	Tüm alanda MS≥4.0 olan olaylar için EKK yöntemi ile elde edilen	•							
G 1 1 1 1 2	magnitüd-frekans ilişkisi. R; ilişki katsayısı	20							
Şekil 13. Inceleme alanının tümünde oluşan depremlere tamamlılık									
	uygulanmadan 10'ar yıllık periyodlar için belirlenen deprem olasılık (01							
Q -1-1 1 4	teniikesi) degerieri	21							
Şekii 14.	uvgulanmadan magnitüdlərə görə həlirlənən donrom əlaşılık (təhlikəsi)								
	değerleri	22							
Sekil 15	İnceleme alanının tümünde oluşan depremlere tamamlılık analizi								
Şekii 15.	uvgulanarak 10'ar villik perivodlar icin belirlenen deprem olasılık								
	(tehlike)değerleri	22							
Sekil 16.	İnceleme alanının tümünde oluşan depremlere tamamlılık analizi								
,	uygulanarak magnitüdlere göre belirlenen deprem olasılık (tehlikesi)								
	değerleri	23							
Şekil 17.	Samsun İlinde 1900-2016 yıllarında meydana gelen depremlerin								
-	büyüklüklerine göre episantr dağılım haritası	24							
Şekil 18.	Samsun ili ve çevresi için EKK yöntemi ile elde edilen Magnitüd-								
	Frekans grafiği. R; ilişki katsayısı	25							
Şekil 19.	Samsun ili ve çevresinde 10'ar yıllık periyodlar için belirlenen deprem								
a 1 4	olasılık (tehlike) değerleri	26							
Şekil 20.	Samsun ili ve çevresinde magnitüdlere göre belirlenen deprem olasılık								

	değerleri	26
Şekil 21.	Ordu İlinde 1900-2016 yıllarında meydana gelen depremlerin büyüklüklerine göre episantr dağılım haritası	27
Şekil 22.	Ordu ili ve çevresi için EKK yöntemi ile elde edilen Magnitüd-Frekans grafiği. R; ilişki katsayısı	28
Şekil 23.	Ordu ili ve çevresinde 10'ar yıllık periyodlar için belirlenen deprem olasılık (tehlike) değerleri	29
Şekil 24.	Ordu ili ve çevresinde magnitüdlere göre belirlenen deprem olasılık değerleri	29
Şekil 25.	Giresun İlinde 1900-2016 yıllarında meydana gelen depremlerin büyüklüklerine göre episantr dağılım haritası	30
Şekil 26.	Giresun ili ve çevresi için EKK yöntemi ile elde edilen Magnitüd- Frekans grafiği. R; ilişki katsayısı	31
Şekil 27.	Giresun ili ve çevresinde 10'ar yıllık periyodlar için belirlenen deprem olasılık (tehlike) değerleri	32
Şekil 28.	Giresun ili ve çevresinde magnitüdlere göre belirlenen deprem olasılık değeri	32
Şekil 29.	Trabzon İli'nde 1900-2015 yıllarında meydana gelen depremlerin büyüklüklerine göre episantr dağılım haritası	33
Şekil 30.	Trabzon ili ve çevresi için EKK yöntemi ile elde edilen Magnitüd- Frekans grafiği. R; ilişki katsayısı	34
Şekil 31.	Trabzon ili ve çevresinde 10'ar yıllık periyodlar için belirlenen deprem olasılık (tehlike) değerleri	35
Şekil 32.	Trabzon ili ve çevresinde magnitüdlere göre belirlenen deprem olasılık değerleri	35
Şekil 33.	Artvin İli'nde 1900-2015 yıllarında meydana gelen depremlerin büyüklüklerine göre episantr dağılım haritası	36
Şekil 34.	Artvin ili ve çevresi için EKK yöntemi ile elde edilen Magnitüd-Frekans grafiği. R; ilişki katsayısı	37
Şekil 35.	Artvin ili ve çevresinde 10'ar yıllık periyodlar için belirlenen deprem olasılık (tehlike) değerleri	38
Şekil 36.	Artvin ili ve çevresinde magnitüdlere göre belirlenen deprem olasılık değerleri	38
Şekil 37.	Gümüşhane İli'nde 1900-2015 yıllarında meydana gelen depremlerin büyüklüklerine göre episantr dağılım haritası	39
Şekil 38.	Gümüşhane ili ve çevresi için EKK yöntemi ile elde edilen Magnitüd- Frekans grafiği. R; iliski katsayısı	40
Şekil 39.	Gümüşhane ili ve çevresinde 10'ar yıllık periyodlar için belirlenen deprem olasılık (tehlike) değerleri	41
Şekil 40.	Gümüşhane ili ve çevresinde magnitüdlere göre belirlenen deprem olasılık değerleri	41
Şekil 41.	Bayburt İli'nde 1900-2015 yıllarında meydana gelen depremlerin büyüklüklerine göre episantr dağılım haritası	42
Şekil 42.	Bayburt ili ve çevresi için EKK yöntemi ile elde edilen Magnitüd- Frekans grafiği, R: ilişki katşayışı	43
Şekil 43.	Bayburt ili ve çevresinde 10'ar yıllık periyodlar için belirlenen deprem olasılık (tehlike) değerleri	44
Şekil 44.	Bayburt ili ve çevresinde magnitüdlere göre belirlenen deprem olasılık değerleri	44
Şekil 45.	KAFZ üzerinde oluşabilecek MS =7.9 magnitüdlü Erzincan depreminin	

Sabil 16	bu alan sınırları içinde oluşturabileceği eşşiddet ve eş-ivme haritaları KAFZ üzerinde oluşabilecek MS = 7.0 magnitüdlü Tokat depreminin bu	46
ŞCKII 4 0.	alan sınırları isində oluşturahiləsəği əssiddət və əs iymə həritələri	17
Salvil 17	Sigmile vontomlarda vari tanlama, tanlanan vari örnaği va bu varinin	4/
Şekii 47.	farklı kışımlarından alda adilan aiktıların samatik göstərimi	40
C -1-:1 10	Filitarile indinational ende eurient çıktırarını şematik gösterinin.	49
Şekii 48.	Elektrik özürenç yönleminde veri toplama ve bu veriden elde edilen	50
C 1 1 40	tomografik yer kesitinin şematik gösterimi.	50
Şekii 49.	vezirkopru Profil I (SK-I) için SIS ve EKT kesitleri. P dalgası	
	tomografik niz kesiti (ustte), elektrik ozdirenç tomografi kesiti (orta) ve	C 1
0 1 1 70	S dalgasi niz-deriniik profili (altta)	61
Şekil 50.	Vezirkopru Profil 2 (SK-2) için SIS ve ERT kesitleri. P dalgası	
	tomografik niz kesiti (ustte), elektrik ozdirenç tomografi kesiti (orta) ve	60
0 1 1 7 1	S dalgasi niz-deriniik profili (altta)	62
Şekil 51.	Bafra Profil I (SK-I) için SIS ve ER I kesitleri. P dalgasi tomografik hiz	
	kesiti (ustte), elektrik ozdirenç tomografi kesiti (orta) ve S dalgası hiz-	60
G 1 1 70	definite profili (alta) $D_{1} = D_{1} = C + C + C + C + C + C + C + C + C + C$	63
Şekil 52.	Bafra Profil 2 (SK-2) için SIS ve ER I kesitleri. P dalgasi tomografik hiz	
	kesiti (usite), elektrik ozdirenç tomografi kesiti (orta) ve S dalgası niz-	C 1
G -1-11 52	definite profili (alta) La latara Das fili (SK 1) isin SiS and EDT lassitiani. Database terrescan file	64
Şekii 55.	işiklepe Prolil I (SK-1) için SIS ve ERT kesilleri. P dalgası tomografik	
	niz kesiti (usite), elektrik ozdirenç tomografi kesiti (orta) ve 5 daigasi	65
Q al al 1 5 4	niz-definitk profil 1 (SK 1) join SIS we EPT headtheri. D deleges to me are fit	03
Şekii 54.	Esence Profil I (SK-1) için SIS ve EKT kesitleri. P dalgası tomografik	
	niz kesiti (usite), elektrik ozdirenç tomografi kesiti (orta) ve S dalgasi	
Q .1.:1 55	niz-definitk profil (atta)	00
Şekii 55.	Esence Profil 2 (SK-2) için SIS ve ERT keşitleri. P dalgası tomografik	
	niz kesiti (usite), elektrik ozdirenç tomografi kesiti (orta) ve 5 daigasi	67
Q al al 1 56	niz-definite profil 1 (SK 1) isin SİS ve EDT tesitleri. D. deleser	0/
Şekii 50.	seolinkaranisar Promi I (SK-1) için SIS ve EKT kesitleri. P dalgasi	
	S dalaası hız darinlik mafili (altta)	60
Salril 57	S dalgasi niz-definik profil (anta) Sabinkarahisan Drafil 2 (SK 2) jain SİS va EDT kasitlari. D dalgası	00
Şekii 57.	seoliikaranisar Fioni 2 (SK-2) için SIS ve EKT kesitleri. F dalgası tomografik hız keşiti (üette) alaktrik özdirene tomografi keşiti (arte) ya	
	S dalgası hız derinlik profili (altta)	60
Salvil 58	Ağalık Madani Profil 1 (SK 1) join SİS və EPT kəşitləri. P dalqaşı	09
Şekii 50.	Agalik Madelli Floili I (SK-1) içili SiS ve EKT kesitleli. F dalgası tomografik hız kesiti (üstte) alektrik özdirene tomografi kesiti (orta) ya	
	S dalgası hız derinlik profili (altta)	70
Sekil 50	Ağalık Madeni Profil 2 (SK-2) join SİS ve ERT keşitleri. P dalgaşı	70
ŞCKII 57.	tomografik hız keşiti (üstte) elektrik özdirenç tomografi keşiti (orta) ye	
	S dalgası hız-derinlik profili (altta)	71
Sekil 60	Ağalık Madeni Profil 3 (SK-3) join SİS ve ERT keşitleri. P dalgaşı	/1
ŞCKII UU.	tomografik hız kesiti (üstte) elektrik özdirenc tomografi kesiti (orta) ve	
	S dalgası hız-derinlik profili (altta)	72
Sekil 61	Camburnu Profil 1 (SK-1) icin SİS ve FRT keşitleri P dalgaşı	12
ŞCKII UI.	tomografik hız keşiti (üstte) elektrik özdirenç tomografi keşiti (orta) ye	
	S dalgası hız-derinlik profili (altta)	73
Sekil 62	Camburnu Profil 2 (SK-2) icin SİS ve FRT keşitleri P dalgaşı	15
şenii 02.	tomografik hız kesiti (üstte) elektrik özdirenc tomografi kesiti (orta) ve	
	S dalgası hız-derinlik profili (altta)	7Δ
Sekil 63	Ovacık Profil 1 (SK-1) için SİŞ ve FRT keşitleri P dalgaşı tomografik	, т
	s and i to the type of the second of the sec	

	hız kesiti (üstte), elektrik özdirenç tomografi kesiti (orta) ve S dalgası	76
0 1 1 (4	hiz-definitk profili (altta)	/5
Şekil 64.	Ovacık Profil 2 (SK-2) için SIS ve ERT kesitleri. P dalgası tomografik	
	hiz kesiti (üstte), elektrik özdirenç tomografi kesiti (orta) ve S dalgası	
G 1 1 (F	hiz-definitk profili (altta)	/6
Şekil 65.	Kazantaş Profil I (SK-I) için SIS ve ERT kesitleri. P dalgasi tomografik	
	hiz kesiti (üstte), elektrik özdirenç tomografi kesiti (orta) ve S dalgası	
	hız-derinlik profili (altta)	77
Şekil 66.	Kazantaş Profil 2 (SK-2) için SIS ve ERT kesitleri. P dalgası tomografik	
	hız kesiti (üstte), elektrik özdirenç tomografi kesiti (orta) ve S dalgası	
	hız-derinlik profili (altta)	78
Şekil 67.	Yenice Profil 1 (SK-1) için SIS ve ERT kesitleri. P dalgası tomografik	
	hız kesiti (üstte), elektrik özdirenç tomografi kesiti (orta) ve S dalgası	
	hız-derinlik profili (altta)	79
Şekil 68.	Yenice Profil 2 (SK-2) için SİS ve ERT kesitleri. P dalgası tomografik	
	hız kesiti (üstte), elektrik özdirenç tomografi kesiti (orta) ve S dalgası	
	hız-derinlik profili (altta)	80
Şekil 69.	Bayburt Profil 1 (SK-1) için SİS ve ERT kesitleri. P dalgası tomografik	
	hız kesiti (üstte), elektrik özdirenç tomografi kesiti (orta) ve S dalgası	
	hız-derinlik profili (altta)	81
Şekil 70.	Bayburt Profil 2 (SK-2) için SİS ve ERT kesitleri. P dalgası tomografik	
	hız kesiti (üstte), elektrik özdirenç tomografi kesiti (orta) ve S dalgası	
	hız-derinlik profili (altta)	82
Şekil 71.	Balkaynak Profil 1 (SK-1) için SİS ve ERT kesitleri. P dalgası	
	tomografik hız kesiti (üstte), elektrik özdirenç tomografi kesiti (orta) ve	
	S dalgası hız-derinlik profili (altta)	83
Şekil 72.	Murgul Profil 1 (SK-1) için SİS ve ERT kesitleri. P dalgası tomografik	
,	hız kesiti (üstte), elektrik özdirenç tomografi kesiti (orta) ve S dalgası	
	hız-derinlik profili (altta)	84
Şekil 73.	Murgul Profil 2 (SK-2) icin SIS ve ERT kesitleri. P dalgası tomografik	
,	hız kesiti (üstte), elektrik özdirenç tomografi kesiti (orta) ve S dalgası	
	hız-derinlik profili (altta)	85

TABLOLAR DİZİNİ

T-1-1-1	Tradice and the state of the st	
Tablo I.	l'urkiye ve çevresi için tarihsel dönemi kapsayan deprem kataloglarından bazıları	8
Tablo 2.	Aletsel dönem icin kataloglarından favdalanılan deprem veri merkezleri	9
Tablo 3	Bölgedeki hüyük (Ms>7 ()) tarihsel depremler (KOFRI)	10
Tablo 4	$1000\ 2016\ \text{willow}$ arasında tüm alanda oluşmuş depremlerin (M>3.0). 0.1	10
1 4010 4.	magnitüd aralığı ile sınıflandırılmış kümületif frakanş değerleri (Ni) ya	
	time alam inin hasanlanan "a" va "h" da žanlari	10
Table 5	tum alan için nesaplanan a ve b degeneri $1000,2016,11,\dots,1,400,01$	19
1 abio 5.	1900-2016 yılları arasında tum alanda oluşmuş depremlerin (MS \geq 4.0) 0.1	
	magnitud aralığı ile siniflandırilmiş kümülatif frekans değerleri (Ni) ve	•
	tüm alan ıçın hesaplanan "a" ve "b" değerleri	20
Tablo 6.	Inceleme alanının tümünde oluşan depremlere tamamlılık analizi	
	uygulanmadan elde edilen deprem tehlikesi değerleri	21
Tablo 7.	İnceleme alanının tümünde oluşan depremlere tamamlılık analizi	
	uygulanmadan elde edilen deprem tehlikesi değerleri	22
Tablo 8.	Samsun ili ve çevresinde 1900-2016 yılları arasında meydana gelmiş	
	depremlerin 0.1 birim magnitüd aralığı ile sınıflanması, kümülatif frekans	
	değerleri ve bölge için hesaplanan "a" ve "b" değerleri	25
Tablo 9.	Samsun ili ve çevresinde oluşan depremlerden elde edilen deprem	
	tehlikesi değerleri	26
Tablo 10.	Ordu ili ve çevresinde 1900-2016 yılları arasında meydana gelmiş	
	depremlerin 0.1 birim magnitüd aralığı ile sınıflanması, kümülatif frekans	
	değerleri ve bölge için hesaplanan "a" ve "b" değerleri	28
Tablo 11.	Ordu ili ve çevresinde oluşan depremlerden elde edilen deprem tehlikesi	
	değerleri	29
Tablo 12.	Giresun ili ve çevresinde 1900-2016 yılları arasında meydana gelmiş	
	depremlerin 0.1 birim magnitüd aralığı ile sınıflanması, kümülatif frekans	
	değerleri ve bölge için hesaplanan "a" ve "b" değerleri	31
Tablo 13.	Giresun ili ve cevresinde oluşan depremlerden elde edilen deprem	
	tehlikesi değerleri	32
Tablo 14.	Trabzon ili ve çevresinde 1900-2016 yılları arasında meydana gelmiş	
	depremlerin 0.1 birim magnitüd aralığı ile sınıflanması, kümülatif frekans	
	değerleri ve bölge icin hesaplanan "a" ve "b" değerleri	34
Tablo 15.	Trabzon ili ve cevresinde olusan depremlerden elde edilen deprem	-
	tehlikesi değerleri	35
Tablo 16.	Artvin ili ve cevresinde 1900-2016 villari arasında meydana gelmiş	
10010 101	depremlerin 0.1 birim magnitüd aralığı ile sınıflanması, kümülatif frekans	
	değerleri ve bölge için hesaplanan "a" ve "h" değerleri	37
Tablo 17	Artvin ili ve cevresinde olusan depremlerden elde edilen deprem tehlikesi	01
14010 17.	değerleri	38
Tablo 18	Gümüshane ili ve cevresinde 1900-2016 yılları arasında meydana gelmiş	50
10010 10.	denremlerin 0.1 hirim magnitüd aralığı ile sınıflanması, kümülatif frekans	
	değerleri ve hölge için hesanlanan "a" ve "h" değerleri	40
Tablo 19	Gümüshane ili ve cevresinde olusan denremlerden elde edilen denrem	40
1 0010 17.	tehlikesi değerleri	⊿1
Table 20	Bayburt ili ve cevresinde 1000-2016 villari arasında mevdana çalmiş	71
1 a010 20.	denremlerin 0.1 hirim magnitüd aralığı ile sınıflanması, kümületif frekens	
	değerleri ve hölge için hesənlənən "a" və "h" değerleri	13
Table 21	Developer ili ve economiado aluson demonitoria alda aditar demonitori	+J

Tablo 21. Bayburt ili ve çevresinde oluşan depremlerden elde edilen deprem

8

tehlikesi değerleri	44							
P dalgası hızı ile zeminlerin ya da kayaçların sökülebilirlikleri (Keçeli,								
2012)	52							
S (kayma veya kesme) dalga hızlarına göre kaya ve zeminlerin sınıflandırılması (Keçeli, 2012)	52							
Elastisite modülü değerlerine göre zemin ya da kayaçların dayanımı								
(Keçeli, 2012)	53							
Kayma modülü değerlerine göre zemin ya da kayaçların dayanımı (Keçeli,								
2012)	54							
Bulk modülü değerlerine göre zemin ya da kayaçların dayanımı (Keçeli,								
2012)	54							
Poisson sınıflaması ve hız oranı karşılaştırması (Keçeli, 2012) 55								
Zemin birimlerinin yoğunluk sınıflaması: (Keçeli, 2012) 55								
Zemin cinsine karşılık zemin hakim titreşim periyodu değerleri (Keçeli,								
2012).	56							
SİS ve ERT ölçüm profillerine ait konum bilgileri 58								
Tüm sismik profillere ait hesaplanan Dinamik-Elastik parametreler 86								
	tehlikesi değerleri P dalgası hızı ile zeminlerin ya da kayaçların sökülebilirlikleri (Keçeli, 2012) S (kayma veya kesme) dalga hızlarına göre kaya ve zeminlerin sınıflandırılması (Keçeli, 2012) Elastisite modülü değerlerine göre zemin ya da kayaçların dayanımı (Keçeli, 2012) Kayma modülü değerlerine göre zemin ya da kayaçların dayanımı (Keçeli, 2012) Bulk modülü değerlerine göre zemin ya da kayaçların dayanımı (Keçeli, 2012) Poisson sınıflaması ve hız oranı karşılaştırması (Keçeli, 2012) Zemin birimlerinin yoğunluk sınıflaması: (Keçeli, 2012) Zemin cinsine karşılık zemin hakim titreşim periyodu değerleri (Keçeli, 2012). SİS ve ERT ölçüm profillerine ait konum bilgileri Tüm sismik profillere ait hesaplanan Dinamik-Elastik parametreler							

1. JEOFİZİK ÇALIŞMALAR

Uygun çöp ve atık depolama alanların tasarımı ve inşası için, jeolojik, hidrojeolojik, çevre bilimi, sosyal bilimler ve sağlık bilimleri açısından ön çalışmalarının yapılması zorunluluğu yanında, Jeofizik mühendisliği çalışmaları ile ilgili alanların zemin karakterlerinin ve depremsellik özelliklerinin detaylı olarak belirlenmesi, sonradan ortaya çıkabilecek olan çökme, kırılma, çatlama ve atık sızıntı sularının yeraltı suyuna karışması gibi zemin sorunlarının ve ilişkili olarak sağlık, sosyo-ekonomik zararların giderilmesi açısından son derece önemlidir.

Muhtemel katı atık alanlarının yerel jeolojik karakterinin bilinmesinin yanında jeoteknik zemin koşulların da detaylı olarak bilinmesi gerekmektedir. Bu tür detayları ortaya çıkarmak için derinlik ve alansal boyutlarda jeolojik birimlerin sıkılık-katılık, gevşeklik-yumuşaklık sınıflamasının yapılması, kırıklık-çatlaklık, zeminin dayanım bilgileri ve dinamik-elastik parametreler ve yeraltı su içeriği - seviyesi gibi özellikler Jeofizik ölçümler ile tahribatsız ve hızlı bir şekilde belirlenmelidir. Bununla birlikte, katı atık depolama için alternatif alanların özellikle deprem üreten aktif faylara olan uzaklıkları, bu alanların depremsellik tarihi, depremden etkilenme dereceleri ve oluşan depremlerin karakterleri (büyüklükleri, deprem üretme sıklıkları hakkında bilgiler) özenle ve bilimsel metotlara göre araştırılmalıdır. Çünkü böyle bir bölgede inşa edilen katı atık depolama alanı, depremden sonra giderilmesi çok zor ve çok büyük çevre problemlerine sebep olabilir.

Bu proje kapsamında düzenli katı atık depolama alanlarının yer seçiminin yapılması için öngörülen 7 ayrı il için depremsellik analizleri ve ön çalışmalarla (harita ve jeolojik) belirlenen alanlarda sismik ve elektrik ölçümler her bir sondaj noktası için 1 profilde, hedef derinliğe göre belirlenmiş olan profil uzunluklarında (*Profil uzunluğu≥3*hedef derinlik*) gerçekleştirilmiştir. Bu verilerden elde edilen bilgilerden çalışılan alanların depolama için uygunluğu genel olarak değerlendirilmiştir.

1.1. Depremsellik Analizleri

1.1.1. Bölgesel Jeoloji ve Stratigrafi

Coğrafik olarak Doğu Karadeniz Bölgesi olarak isimlendirilen ve Karadeniz'in güneydoğu sahiline paralel yaklaşık 500 km uzunluğunda ve 200 km genişliğinde bir dağ zincirinden oluşan Türkiye'nin KD kesimi, jeolojik olarak Doğu Pontid Orojenik Kuşağı olarak adlandırılan tektonik birliğe karşılık gelir (Ketin, 1976). Bu tektonik birlik; litolojik farklılıklar, jeolojik ve jeofiziksel özellikler, tektonik yapılar ve fasiyes değişimlerine bağlı

olarak kuzeyden güneye doğru Kuzey Zon, Güney Zon ve Eksen Zonu olarak isimlendirilen üç farklı alt birliğe ayrılır (Bektaş vd., 1995; Eyüboğlu vd., 2006). Doğu Pontid Orojenik kuşağının paleo-tektonik evrimi bu üç farklı doğrultudaki faylarla kontrol edilmiştir. Fayların oluşturduğu küçük ve büyük bloklar (Kuzey, Güney, Eksen Zonu) bağımsız ve göreceli olarak hareket ettiklerinden her bloğun jeolojik özelliği bir diğerinden farklıdır. Blokların yatay ve düşey hareketlerine bağlı olarak gelişen kıvrımlar blok kenarlarına veya faylara paralel veya yarı paralel sürüklenme kıvrımları (drag folds) veya örtü kıvrımları (drape folds) özelliğindedir. Kuzey Zon'da genellikle Mesozoyik ve Senozoyik yaşlı volkanik kayaçlar ve granitik sokulumlar baskınken, Güney Zon'da sedimanter kayaç serileri baskın litolojiyi oluşturmaktadır. Güneydeki Torid birliği ile Doğu Pontid magmatik arkı arasında uzanan Eksen Zonu ise geniş alanlarda yüzeyleme veren mafik-ultramafik kütleler ve ofiyolitik olistostromal melanj birlikteliği ile karakteristiktir (Şekil 1).

Bölgede en ayrıntılı çalışmalardan birini yapan Güven (1993) Kuzey Zon'daki istifi tabandan tavana ele almış ve tüm birimlere formasyon veya litodem mertebesinde isimler vermiştir. Paleozoik-Kuvaterner zaman aralığında gelişmiş kaya birimlerinin yüzeylendiği bölgede, Erken Jura'dan başlayarak Eosen sonlarına kadar periyotlar halinde gelişimini sürdüren magmatizmanin ürünlerini içeren volkano-tortul istifler, volkanik ve intrüzif kayaçlar yaygındır. Magmatik faaliyetlerin duraksadığı dönemlerde ise tortul istifler birikmiştir.

Kuzey Zon'da alttan üste doğru; Paleozoyik yaşlı olan ve özellikle Giresun Dereli yöresinde yüzeyleme veren metamorfik kayaçlar (Pzm), Erken-Orta Jura yaşlı bazalt, andezit, konglomera, kumtaşı, marn vb. kayaç türlerinden oluşan Hamurkesen Formasyonu (Jh), Geç Jura-Erken Kretase yaşlı kireçtaşlarından oluşan Berdiga Formasyonu (JKb), Geç Kretase yaşlı bazalt, andezit, piroklastik kayaçlar, kumtaşı vb. kayaç türlerinden oluşan Çatak Formasyonu (Kç), riyodasit, dasit ve piroklastik kayaçlardan oluşan Kızılkaya Formasyonu (Kk), Kaçkar Granitoyidi-I, bazalt, andezit, piroklastik kayaçlar, çamurtaşı, kumtaşı, marn vb. kayaç türlerinden oluşan Çağlayan Formasyonu (Kça), riyolit, riyodasit ve piroklastik kayaçlarından oluşan Çayırbağ Formasyonu (Kçb), Mestriştiyen-Paleosen yaşlı kumtaşı, marn ve killi kireçtaşlarından oluşan Bakırköy Formasyonu (KTb), Eosen yaşlı Kaçkar Granitoyidi-II ile andezit, bazalt ve piroklastik kayaçlardan oluşan Kabaköy Formasyonu (Tk) yer alır (Güven, 1993). Pliyosen yaşlı Besirli (Plb), Hamidiye Formasyonları (Plh), haritalanamayacak kadar küçük ölçekli bazaltik dayklar ile Kuvaterner yaşlı oluşuklar (Qal) bölgenin en genç birimleridir (Şekil 2) (Güven, 1993).

Şekil 1. Doğu Pontid Orojenik Kuşağı'nın ana tektonik-litolojik birliktelikleri; 1. Paleozoyik Metamorfik temel, 2. Paleozoyik granitler, 3. Serpantinit, 4. Ayrışmamış Mesozoyik ve Senozoyik kayaçlar, 5. Platform Karbonatlar, 6. Ana Mesozoyik tortul kayaçlar, 7. Kretase ve Eosen yay volkanikleri, 8. Üst Kretase ve Eosen yay granitleri, 9. Kaldera ve domlar, 10. Ortogonal örtü ve sürüklenme kıvrımları, 11. Doğrultu-atımlı fay, 12. Ters Fay, 13. Normal fay, KAF; Kuzey Anadulu Fay, KDAF, Kuzey-Doğu Anadolu Fayı (Eyüboğlu ve diğ., 2007).

ÜST SİSTEM	SİSTEM	SERİ	KAT	FORMASYON	SİMGE	KAYA TÜRÜ	AÇIKLAMALAR			
	KUV	AL	ÜVY	ON	Qal		Kum, Kil, Çakıl			
YİF	2	PLİO. KUV. PLİO.		HAMİDİYE BEŞİRLİ	Plh Plb		HAMİDİYE FORMASYONU Çakıltaşı, Kum, kil BEŞİRLİ FORMASYONU			
ENOZO	RSIYE	EOSEN		KABAKÖY	Tk		Konglomera, Kumtaşı, Kiltaşı, Bazalt, Aglomera KABAKÖY FORMASYONU Andezit, Bazalt, Lav ve Piroklastları (Kumtaşı, Kumlu Kireçtaşı, Marn) Tk, Kaçkar Granitoyidi-II			
S	EL	PALE	OSEN	JRKÖY	КТb		BAKIRKÖY FORMASYONU			
		ÜST KRETASE				STRİHTİYEN	ÇAYIRBAĞ BAK	Kçb		ÇAYIRBAĞ FORMASYONU Riyolit-Riyodasit Lav ve Piroklastlar
	ASE		ÜST KRETASE	ÇAĞLAYAN	Kça		ÇAĞLAYAN FORMASYONU Bazalt-Andezit Lav ve Piroklastları (Kırmızı Çamurtaşı, Marn, Kumtaşı, Tüf) Tk _ı Kaçkar Granitoyidi-I			
ZOYÌI	KRET			KIZILKAYA	Kk		KIZILKAYA FORMASYONU Riyodasit-Dasitik Lav ve Piroklastları			
MESO			TURONİYEN-KONİ SANTONİYE	ÇATAK	Kç		ÇATAK FORMASYONU Bazalt-Andezit Lav ve Piroklastları (Kumtaşı, Silttaşı, Killi Kireçtaşı) Tk, Kaçkar Granitoyidi-I			
		Ü. JURA A. KRE.	PORT. BERRÍA. SENOM	BERDİGA	JKb		BERDİGA FORMASYONU Çörtlü Kireçtaşı, Kumlu Kireçtaşı, Resifal Kireçtaşı			
	JURA	LİYAS	sinemuri.	HAMURKESEN	Jh		HAMURKESEN FORMASYONU Bazalt-Andezit Lav ve Piroklastları (Konglomera, Kırmızı Renkli Kumtaşı, Killi Kireçtaşı, Marn) UYUMSUZLUK			
	PALI	EOZO	DYİK		Pzm		METAMORFİK TEMEL Gnays, Mikaşist, Klorit, Şist			

Şekil 2. Doğu Pontid Orojenik Kuşağı Kuzey Zonu'na ait stratigrafik kolon kesiti (Güven, 1993).

1.1.2. Bölgenin Sismotektoniği

Türkiye, Avrasya, Arabistan ve Anadolu levhalarının birleştiği bir üçlü birleşmenin yer aldığı hareketli ve karmaşık bir bölgedir. Burada McKenzie (1972), Alptekin (1973), Ketin (1977)' den yararlanılarak belirlenen levha tektoniği modeli benimsenmiştir (Şekil 3). Anadolu levhası sağ yönlü doğrultu atımlı Kuzey Anadolu Fay Zonu (KAFZ) ile sol yönlü doğrultu atımlı Doğu Anadolu Fay Zonu (DAFZ) arasında batıya doğru hareket etmektedir.

Şekil 3. Anadolu ve çevresinin levha tektoniği modeli (Erdik ve diğ. 2014'den değiştirilmiştir).

Kızıldeniz'deki açılma nedeniyle Arap Levhası kuzeydoğuya doğru hareket etmekte, Afrika Levhası ise kuzeye doğru kaymaktadır. Ölü Deniz Fayı'nın devamı olan DAFZ Karlıova civarında KAFZ ile kesişmektedir. Karlıova'dan sonra KAFZ'ın doğuya doğru, DAFZ'ın ise kuzeydoğuya doğru devam ettiği görülmektedir (Osmanşahin ve diğ., 1986; Kenar ve diğ., 1996). Arabistan Levhası ile Avrasya'nın bir parçası olan Van Bölgesi, Güneydoğu Anadolu'da Bitlis Bindirme Zonu ile sınırlanmaktadır.

Depremsellik çalışması yapılacak 7 ile en yakın konumda bulunan KAFZ'ın toplam uzunluğu yaklaşık 1000 km civarında olup, toplam atım miktarı 25 km ile 85 km arasında değişmektedir. Doğuda fay 100 m ile birkaç yüz metre arasında değişen genişliklerde oldukça dar çizgisel görünümler ve ters bileşenli özellikler gösterirken, batıya doğru fay zonunun genişliği artarak 5 km ye ulaşır ve normal atım bileşenli özellikler sunmaktadır. Fay orta

kısımda dış bükey bir kavis yaparak fayın kilitlenmesine neden olacak şekilde Anadolu bloğunun güneybatıya doğru dönmesine (rotasyona) neden olmaktadır.

KAFZ'daki depremlerin zaman içerisindeki dağılımlarına baktığımızda, aktivitenin fayın orta kısımlarından başladığı ve daha sonra batı ve doğu uçlarına doğru ilerlediği açıkça görülmektedir. KAFZ'ın orta kesimleri ile doğu ve batı uçları, paleosismolojik olarak oldukça belirgin farklılıklar göstermektedir. Fayın doğu kesimi, sıkışma etkisi altında kalırken batı kesiminde çekilmeye maruz kalmaktadır. KAFZ boyunca şimdiye kadar oluşan depremlerin odak mekanizma sonuçları bu farklı gerilme rejimleri altında bulunduklarını kanıtlamaktadır. KAFZ üzerinde yakın zamanda meydana gelen 17 Ağustos 1999 Kocaeli (M_S=7.8) ve 12 Kasım 1999 Düzce (M_S=7.5) depremleri bu bölgenin depremselliği ile ilgili çalışmaların önemini artırmıştır.

1.1.3. Deprem Oluşumları

Doğu Karadeniz bölgesi dünyadaki en aktif deprem kuşaklarından birisi olan Alp-Himalaya kuşağında yer alan KAFZ'a yakınlığı nedeniyle bölgeye etkiyen depremlerin kaynağını oluşturan aktif tektonizmanın ayrıntılı olarak ortaya konulması, depremlerin zaman dağılımları, tamamlılık analizleri ve tekrarlanma aralıklarının belirlenmesi bu amaca yönelik yapılacak çalışma için son derece önemlidir.

Depremsellik çalışmasında depremlerin zaman ve uzay dağılımları dikkate alınır. Bu nedenle depremlerin oluş zamanları, episantrları (dış merkez), odak derinlikleri ve magnitüdleri (büyüklük) ilksel veriler olarak kullanılır. Depremlerin bu parametreleri gözlemsel ya da aletsel yöntemlerle elde edilir. Depremlerin aletlerle kaydedilmeye başlandığı 1900 yılından itibaren aletsel olarak bu parametreler elde edilmiştir. 1900 yılından öncesi tarihsel dönem olarak adlandırılmış ve bu dönem için ise sağlıklı ve kesin gözlemsel veri olmadığından deprem parametreleri tam olarak belirlenememiştir. Aletsel dönemde kaydedilmiş Anadolu ve çevresinde hasar oluşturmuş kuvvetli ve büyük depremler Şekil 4'te, tarihsel dönemde KAFZ boyunca meydana gelen depremler Şekil 5'de gösterilmektedir.

İstatistiksel olarak deprem verilerinin değerlendirilmesine dayanan çalışmalarda kullanılan verilerin zaman ve uzay boyutundaki dağılımları çalışmanın sonucunu direk etkileyeceğinden bu verilerin homojen (tekdüze) hale getirilmesi gerekir. Ancak bu sayede doğru magnitüdsıklık ilişkileri belirlenebilir ve buda doğru bir depremsellik çalışması yapılmasına olanak sağlar.

Şekil 4. Anadolu ve çevresinde aletsel dönemde hasar oluşturmuş kuvvetli ve büyük depremler (KOERI).

Şekil 5. A.1500 km uzunluğundaki KAFZ. B. Fay boyunca olan tarihsel depremler (Ambraseys, 1970'den değiştirilmiştir).

1.2. Deprem Verilerinin Derlenmesi

Bu bölgeye ait deprem verilerini elde etmek için tarihsel dönemi kapsayan birkaç deprem kataloğundan (Tablo 1) ve aletsel dönemi içeren bazı veri merkezlerinin bültenlerinden (Tablo 2) yararlanılmıştır. Büyük depremlerin tamamlılığı için (Ms≥7.0) tarihsel dönem depremlerden yararlanılmıştır (Şekil 6, Tablo 3). Şiddet-magnitüd dönüşümü Türkiye ve civarında oluşmuş depremler için Sayıl (2014) tarafından belirlenen (1) bağıntısı ile yapılmıştır.

$$M_{S} = 0.47 \ (\pm 0.02) \ \mathrm{I_{o}} + \ 2.05 \ (\pm 0.24) \tag{1}$$

Verilerin tamamlılığının sağlanması için 1900-2016 yılları arasında oluşmuş aletsel dönem veriler kullanılmış ve Aydın (2016) tarafından Türkiye için hesaplanan dönüşüm bağıntıları kullanılarak tüm magnitüdler (mb, ML, Md, Mw) yüzey dalgası magnitüdüne (Ms) dönüştürülmüş, homojen veri kataloğu elde edilmiştir (Şekil 7).

Araștırmacılar	Yıl	Sembol
Pınar ve Lahn	1952	PL
Ergin ve diğ.	1967	EGU
Karnik	1968	VKR
Öcal	1968	ON
Alsan ve diğ.	1975	ATB
Dewey	1976	DJW
Ayhan ve diğ.	1987	AASÜ
Papazachos ve Comminakis	1982	PC
Ambraseys ve Jackson	1981	AJ
Soysal ve diğ.	1981	SSKA
Gündoğdu ve Altınok	1986	GA

Tablo 1. Türkiye ve çevresi için tarihsel dönemi kapsayan deprem kataloglarından bazıları.

Veri merkezi	Çalışma Yılı	Sembol
British Association or the Advancement of Science	1913-1917	BAS
International Seismological Summary	1918-1963	ISS
Bureau Central International	1953-1963	BCI
International Seismological Centre	Sürekli	ISC
U.S. Coast and Geodetic Survey	"	USCG
Boğaziçi Üniversitesi Kandilli Gözlemevi	"	ISK

Tablo 2. Aletsel dönem için kataloglarından faydalanılan deprem veri merkezleri.

36 42 Şekil 6. İnceleme alanını kapsayan Türkiye'nin doğusundaki tarihsel depremler (M.Ö. 2100-M.S. 1900).

Tarih	Saat	Enlem	Boylam	Şiddet	Yer
1045		39,75	39,5	IX	Erzincan
1268		39,75	40,4	IX	Erzincan, Erzurum-(15 000 ölü)
1458		39,75	40,4	Х	Erzincan, Erzurum-(32 000 ölü)
21 12 1482		39,75	39,5	IX	Erzincan, Erzurum
17 06 1584		39,75	39,5	IX	Erzincan, Erzurum-(15 000 ölü)
24 07 1852		39,9	41,3	IX	Erzurum
02 06 1859	10:30	39,9	41,3	IX	Erzurum-(15 000 ölü)
23 04 1868		40,0	41,7	IX	Erzurum, Kars
01 11 1875	10:00	39,9	41,3	Х	Erzurum
20 05 1890		39,9	38,8	IX	Refahiye, Erzincan

Tablo 3. Bölgedeki büyük (Ms≥7.0) tarihsel depremler (KOERI)

Şekil 7. Türkiye için belirlenen magnitüd dönüşüm bağıntıları. R; ilişki katsayısı, σ ; standart sapma (Aydın, 2016).

Homojen hale getirilen ve bu çalışmada kullanılan depremlerin uzaysal dağılımı Şekil 8'de gösterilmektedir.

Şekil 8. Çalışmada kullanılan depremlerin (1900-2016) episantr dağılımları.

1.3. Aletsel Dönem Depremlerin Zaman Dağılımları

Sismograf istasyonlarının gelişmesi ve yaygınlaşması ile doğru orantılı olarak inceleme alanında tarihsel döneme göre oldukça fazla sayıda depremin kaydedildiği aletsel dönem verilerini kullanılması tercih edilmiştir. Çünkü aletsel dönem deprem verilerinin zaman ve uzay dağılımlarını incelemek tarihsel dönem verilerine göre daha iyi sonuçlar vermektedir. Ancak bu sayede küçük magnitüdlü olayları da içerecek biçimde (Ms≥3.0) deprem kataloğunun tamamlılığı sağlanmıştır. Zira bölgenin deprem dizisindeki eksiklik bu verilerle yapılacak olan istatistiksel çalışmaları etkileyecektir. Bu etkileri en aza indirgemek için deprem verilerine tamamlılık çözümlemesi uygulayarak verilerin hangi yıllarda tam olduğunu belirlemek gerekir. Bu amaçla inceleme bölgesinde aletsel dönemde oluşmuş Ms≥3.0 olan depremlerin histogramı çizilmiş (Şekil 9a), kümülatif (birikimli) deprem sayılarının yıllık dağılımı oluşturulmuştur (Şekil 9b). Çizdirilen dağılımın doğrusal olmayışı bu magnitüd aralığında verilerin tamamlılığının sağlanamadı sonucuna varılmıştır.

Şekil 9. a) İnceleme alanındaki depremlerin (Ms≥3.0) yıllık sayıları, b) bu depremlerin kümülatif sayılarının yıllık dağılımı.

Verilerin tamamlılığının sağlanması için Ms \geq 4.0 olan depremler kullanılarak yıllık deprem sayını gösteren histogram (Şekil 10a) çizdirilmiş, kümülatif deprem sayısının yıllık dağılımı elde edilmiştir (Şekil 10b) ve bu magnitüd aralığı için çizdirilen yıllık kümülatif deprem dağılımın doğrusal olduğu görülmüştür. Tarihsel depremler sadece büyük depremlerin (Ms \geq 5.5) tamamlılığında kullanılabilir.

Şekil 10. a) İnceleme alanındaki depremlerin (Ms≥4.0) yıllık sayıları, b) bu depremlerin kümülatif sayılarının yıllık dağılımı.

1.4. Deprem Oluşum Modelleri

Gelecekte oluşabilecek depremlerin araştırılmasında geçmişte meydana gelen depremlerin oluş zamanı, episantr (dış merkez) koordinatları, magnitüd, şiddet ve odak derinliği gibi parametrelerin bilinmesi gerekir. Bu parametreler kullanılarak farklı araştırmacılar tarafından deprem oluşumuyla ilgili birçok istatistiksel model geliştirilmiştir. Bu modellerden en çok bilinenleri Poisson ve Markov modelleridir. Markov modelde gelecekte oluşacak depremler geçmişte oluşan depremlere bağlıdır. Poisson modelde ise depremlerin birbirinden bağımsız oldukları kabul edilir ve deprem oluşumu zaman uzayında bir Poisson süreç olarak alınır. Her iki modelden elde edilen sonuçlar farklı çıkmaktadır. Markov model, deprem oluşumu için Reid (1910)'in 1906 San Francisco depreminden sonra geliştirilen elastik rebound (yenilenme) teorisine uymakta, ancak geçiş olasılıkları gibi elde edilmesi güç ek birtakım bilgiye ve daha çok sayıda değerlendirmeyi gerektirmektedir. Poisson model ise küçük magnitüdlü depremler için elde edilen gözlemsel verilerle her zaman uyumlu olmamaktadır. Bunun nedeni ise, küçük magnitüdlü depremlerin çoğunlukla ana şoka bağlı olarak gelişen artçı şoklar niteliğinde olmalarıdır (Merz ve Cornell, 1973; Shlien ve Toksöz, 1970). Oysa Poisson modelde olayların birbirinden bağımsız olması kabulüne göre depremlerin bu zaman uzayında kümeleşme özelliğini içermemektedir. Genel görüş olarak Poisson model büyük magnitüdlü ana şokların oluşumu için geçerlidir ve mühendislik amaçları için yeterlidir (Lomnitz ve Epstein, 1966; Kalberg ve Cornell, 1969; Lomnitz, 1973; Gürpınar, 1977).

1.4.1. Poisson Model

Poisson modelin temel özelliği depremlerin uzay ve zaman içerisindeki oluşumlarının birbirinden bağımsız kabul edilmesidir. Deprem oluşumlarının zaman uzayında bir Poisson süreci oluşturabilmesi için aşağıda belirtilen varsayımları içermelidir:

- Deprem oluşumları zaman uzayında istatistiksel olarak birbirinden bağımsızdır.
- Bir depremin olma olasılığı zaman aralığının uzunluğu ile orantılıdır.
- Belirli bir kayn akta oluşan deprem diğer bir kaynakta oluşan depremden etkilenmez.
- Belirli küçük bir zaman aralığında birden çok deprem olma olasılığı tek bir depremin olma olasılığına oranla ihmal edilebilir küçüklüktedir.

Birinci varsayıma göre, belirli bir periyod içerisinde herhangi bir anda olabilecek bir deprem geçmiş depremlere bağımlı olmadığı gibi, gelecekteki depremleri de etkileyemez. Yani sismik olaylar bellekesiz (memoryless) kabul edilir. Bu durum büyük magnitüdlü depremlerin olduğu durumlarda önemli bir hata yaratmamaktadır. İkinci varsayıma göre, en son depremden sonra ne kadar zaman geçmişse deprem olma olasılığı o kadar yüksektir. Üçüncü varsayıma göre, herhangi bir bölge için oluşan bir depremin diğer bölgede oluşan depremle ilgisi yoktur. Dördüncü varsayım ise çok küçük bir zaman aralığında (Δ t) birde çok deprem olamayacağını belirtmektedir. Bu gerçekçi bir varsayımdır ve gözlem sonuçları ile de uyumludur (Shah ve Movasette, 1975).

Poisson modeline göre incelenen bir bölgede t zamanında m≥m₀ magnitüdlü n sayıda depremin olma olasılığı şöyledir:

$$\Pr(\mathbf{N} = \mathbf{n} | \mathbf{v}, \mathbf{t}) = \frac{e^{-\mathbf{v}\mathbf{t}} (\mathbf{v}\mathbf{t})^{\mathbf{n}}}{\mathbf{n}!}$$
(2)

Burada v, incelenen bölgede birim zamanda (genellikle bir yıl) ortalama deprem sayısı, n ise incelenen bölgede t zamanda olan depremlerin sayısını gösteren rasgele değişkendir.

1.4.2. Magnitüd-frekans İlişkisi

Bir bölgenin depremselliğinin ve sismik tehlikesinin araştırılmasında, geçmişte meydana gelen depremlerin zaman ve uzay dağılımlarından yararlanılarak geliştirilen çeşitli istatistiksel yaklaşımlar kullanılmaktadır. Bu tür çalışmalarda gelecekte oluşabilecek deprem etkinliğinin ve tekrarlanma periyodunun belirlenmesi amaçlanmaktadır.

Bu amaçla öncelikle depolama alanı oluşturulacak 8 şehir için ayrı ayrı depremsellik incelemesi yapılarak 1900-2016 yılları arasında oluşmuş depremlerin episantr dağılımı ve bölgedeki fay zonları ile ilişkileri incelenmiş, her bir şehir için depremlerin magnitüd-frekans ilişkileri saptanmış, bu ilişkilerden yaralanarak sismik risk ve tekrarlanma periyodu değerleri bulunmuştur.

Gerçek deprem verilerine bakıldığında deprem kümelerinden yararlanılarak oluşturulan alansal kaynak içerisinde $N(m \ge m_0)$ Poisson modeli ortalama bir tekrarlanma periyodu hesaplar. Bu tekrarlanma periyodu Gutenberg-Richter (1954) ilişkisi ile ilişkilidir. Magnitüdfrekans bağıntıları deprem istatistiğinin temelini oluşturur ve günümüzde deprem etkinliğinin bir ölçütü olarak kullanılır. Magnitüdün fonksiyonu olarak depremlerin oluş frekansı incelendiğinde, genellikle doğrusal bir ilişki izlediği görülür ve bu ilişki (3) bağıntısı ile verilir.

$$LogN(M) = a - bM \tag{3}$$

Burada N, birikimli (kümülatif) deprem sayısını, M ise magnitüdü göstermektedir. Magnitüdfrekans bağıntılarının hesaplanmasında normal ve yığınsal frekanslar arasında ayrım yapmak gerekir. Yığılma frekansı (kümülatif frekans) ile sismolojide, verilen bir M magnitüdüne eşit veya daha büyük olan depremlerin sayısı anlaşılabilir.

Gutenberg-Richter bağıntısı genellikle bütün magnitüdlerde doğrusal değildir. Bu nedenle $\log N(M)$ 'nin doğrusal olduğu magnitüd aralığının (M₁, M₂) belirlenmesi gerekir. Büyük depremlere ait gözlemler az olduğundan bunlar için bağıntı belirsizdir. Küçük depremlerde ise gürültü düzeyinin yüksek olmasının çok duyarlı sismograflar kullanılmasını engellediği için deprem dizisinin tam olduğundan emin olmak gerekir. Burada kullanılan en küçük deprem magnitüdü M₁=3.0 alınmıştır.

Magnitüd-frekans bağıntısındaki a ve b sabit parametrelerdir: a-parametresi gözlem peryoduna, inceleme alanının büyüklüğüne ve deprem etkinliğinin seviyesine bağlı olarak değişir. Ortalama yıllık sismik aktivite indeksi olarak da tanımlanır. Gutenberg ve Richter (1954), dünya ölçüsünde istatistik sonuçlara dayanarak, sığ depremler için b=0.9±0.02, orta

ve derin depremler için b=1.2±0.2 değerlerini bulmuşlardır. Türkiye için ise b=0.9±0.2 değerini vermektedirler. b-parametresi depremlerin istatistik analizinde önemli bir parametre olup, doğrusal ilişkinin eğimini vermektedir. Kayaçların deformasyonu ve dolayısıyla deprem oluşumunun fiziği ile ilgili, b-parametresinin bölgeye ve zamana göre değişimleri, sismotektonik bölgelendirme ve depremlerin önceden belirlenmesi problemlerinde kullanılmaktadır. Weeks ve diğ. (1978), kayaçlar üzerinde yaptıkları deneyler sonucu, b-değerinin depremden önce azaldığını göstermişlerdir. b-değeri sismik etkinliğin bir göstergesi olup bölgeden bölgeye değişmektedir. Karnik (1969), bu değişimi örneklemiştir. Normal olarak küçük bir b-değeri yüksek bir gerilme düşümü ile, büyük bir b-değeri ise düşük bir gerilme düşümü ile, büyük bir b-değeri ise düşük bir gerilme düşümü ile ilgilidir.

İstenen veri grubu için a- ve b-değerleri değişik yöntemlerle hesaplanabilir. Bu parametreler bölgeye ve zamana bağlı değişimlerinin yanı sıra, hesaplama yöntemine ve kullanılan veri grubuna bağlı olarak da değişmektedirler. Tüm yöntemler birbirine yakın da olsa farklı sonuçlar verir (Alptekin, 1978). Bu yöntemler özetlenerek, hangi koşullarda geçerli oldukları Alptekin (1978), Osmanşahin (1983) ve Özer (1983) tarafından açıklanmıştır. Magnitüd-frekans bağıntılarını belirleyen a- ve b-parametrelerinin hesaplanmasında en yaygın olanı en küçük kareler yöntemidir (EKK). Bu yönteme göre a- ve b-parametrelerinin bulunmasında (4) bağıntıları kullanılmaktadır;

$$\sum_{i=l}^{n} \text{LogN}_{i} = an - b \sum_{i=l}^{n} M_{i}$$
(4)

$$\sum_{i=1}^{n} M_{i} . LogN_{i} = a \sum_{i=1}^{n} M_{i} - b \sum_{i=1}^{n} M_{i}^{2}$$

Burada n grup sayısıdır. Diğer parametreler (1) bağıntısında tanımlanmıştır. Bu şekilde hesaplanan a- ve b-sabitleriyle istenen magnitüdlü bir depremin, istenen bir periyod aralığı içinde olma olasılığı hesaplanabilir. Kümülatif frekans ile normal frekans arasındaki ilişkisinden (5) bağıntısı elde edilir;

$$a' = a - \text{Log}(b\ln 10) \tag{5}$$

Gutenberg-Richter (1954) tarafından verilen magnitüd-frekans ilişkisi (6) bağıntısı şeklinde yazılabilir;

$$N(M) = 10^{a-bM}$$
(6)

Bunun inceleme zaman periyodu T₁'e bölünmesiyle (7) bağıntısı elde edilir;

$$\frac{N(M)}{T_1} = \frac{10^{a-bM}}{T_1}$$
(7)

Her iki tarafın logaritması alınarak (8) ve (9) bağıntıları bulunur.

$$Log(N(M)T_1) = a - bM - LogT_1$$
(8)

$$n(M\rangle M_1) = 10^{a-bM-LogT_1}$$
(9)

Son ifadeden (10) ve (11) bağıntıları elde edilir.

$$\mathbf{a}_{1}^{'} = \mathbf{a}^{\prime} - \mathrm{LogT}_{1} \tag{10}$$

$$n(M) = 10^{a_1' - bM}$$
(11)

Bu bağıntılar yardımıyla verilen bir zamanda magnitüdleri verilen bir M_1 değerinden büyük veya ona eşit depremlerin yıllık ortalama sayısı $n(M \ge M_1)$ hesaplanabilir (Tuksal, 1976). Herhangi bir bölgede, T_1 yıllık bir gözlem aralığı için verilen herhangi bir M magnitüdlü depremin T yıl içinde oluşma riski (12) bağıntısından (Gencoğlu, 1972; Tabban ve Gençoğlu, 1975);

$$R(M) = 1 - e^{-n(M)T}$$
(12)

ve tekrarlanma periyodu (13) bağıntısından bulunur.

$$Q = \frac{1}{n(M)}$$
(13)

1.5. İnceleme Alanındaki Depremsellik Çalışmaları

1.5.1. İnceleme alanının tümü için magnitüd-frekans ilişkisi ve deprem olasılığı

İnceleme alanının tamamında meydana gelen depremler (Şekil 7) kullanılarak önce tamamlılık dikkate alınmadan yapılmadan yani M_s≥3.0magnitüd aralığındaki olaylar için 0.1 magnitüd aralığı sınıflamasına göre birikimli frekanslar belirlenmiştir (Tablo 4). En Küçük Kareler (EKK) yöntemi ile hesaplanan ve (14) bağıntısı ile verilen magnitüd-frekans ilişkisi bulunmuş, bu ilişkinin grafiği Şekil 11'de gözlemsel değerlerle birlikte çizilmiştir.

$$Log(Ni) = 5.1 - 0.67Ms$$
 (14)

Şekil 11. Tüm alanda M_s≥3.0 olan olaylar için EKK yöntemi ile elde edilen magnitüd-frekans ilişkisi. R; ilişki katsayısı.

Tablo 4. 1900-2016 yılları arasında tüm alanda oluşmuş depremlerin ($M \ge 3.0$) 0.1 magnitüd aralığı ile sınıflandırılmış kümülatif frekans değerleri (Ni) ve tüm alan için hesaplanan "a" ve "b" değerleri.

	Büyüklük (Ms)	Deprem Sayısı (N)	Ni	Ortalama Büyüklük	LogNi	a	b
	3.0-3.1	668	1359,00	3,05	3,13	5,14	0,67
	3.2-3.3	148	691,00	3,25	2,84		
	3.4-3.5	134	543,00	3,45	2,73		
	3.6-3.7	70	409,00	3,65	2,61		
	3.8-3.9	74	339,00	3,85	2,53		
	4.0-4.1	47	265,00	4,05	2,42		
	4.2-4.3	33	218,00	4,25	2,34		
	4.4-4.5	55	185,00	4,45	2,27		
	4.6-4.7	39	130,00	4,65	2,11		
	4.8-4.9	23	91,00	4,85	1,96		
	5.0-5.1	15	68,00	5,05	1,83		
	5.2-5.3	14	53,00	5,25	1,72		
ALAN	5.4-5.5	10	39,00	5,45	1,59		
	5.6-5.7	8	29,00	5,65	1,46		
	5.8-5.9	10	21,00	5,85	1,32		
	6.0-6.1	2	11,00	6,05	1,04		
	6.2-6.3	3	9,00	6,25	0,95		
	6.4-6.5	0	6,00	6,45	0,78		
	6.6-6.7	0	6,00	6,65	0,78		
	6.8-6.9	3	6,00	6,85	0,78		
	7.0-7.1	2	3,00	7,05	0,48		
	7.2-7.3	0	1,00	7,25	0,00		
	7.4-7.5	0	1,00	7,45	0,00		
	7.6-7.7	0	1,00	7,65	0,00		
	7.8-7.9	1	1,00	7,85	0,00		

Tamamlılık analizine göre depremlerin tamam oldukları periyod dikkate alınarak $M_S \ge 4.0$ magnitüd aralığı için 0.1 sınıf aralığı kullanılarak birikimli frekanslar belirlenmiş (Tablo 5), En Küçük Kareler yaklaşımı ile (15) bağıntısında verilen magnitüd-frekans ilişkisi hesaplanmış ve Şekil 12'de doğrusal ilişkinin grafiği gözlemsel değerlerle birlikte çizdirilmiştir.

$$Log(Ni) = 5.3 - 0.76Ms$$
 (15)

Şekil 12. Tüm alanda M_S≥4.0 olan olaylar için EKK yöntemi ile elde edilen magnitüd-frekans ilişkisi. R; ilişki katsayısı.

Tablo 5. 1900-2016 yılları arasında tüm alanda oluşmuş depremlerin ($M_S \ge 4.0$) 0.1 magnitüd aralığı ile sınıflandırılmış kümülatif frekans değerleri (Ni) ve tüm alan için hesaplanan "a" ve "b" değerleri.

-							
	Büyüklük (Ms)	Deprem Sayısı (N)	Ni	Ortalama Büyüklük	LogNi	а	b
	4.0-4.1	47	265	4,05	2,42	5,34	0,70
	4.2-4.3	33	218	4,25	2,34		
	4.4-4.5	55	185	4,45	2,27		
	4.6-4.7	39	130	4,65	2,11		
	4.8-4.9	23	91	4,85	1,96		
	5.0-5.1	15	68	5,05	1,83		
TÜM ALAN	5.2-5.3	14	53	5,25	1,72		
	5.4-5.5	10	39	5,45	1,59		
	5.6-5.7	8	29	5,65	1,46		
	5.8-5.9	10	21	5,85	1,32		
	6.0-6.1	2	11	6,05	1,04		
	6.2-6.3	3	9	6,25	0,95		
	6.4-6.5	0	6	6,45	0,78		
	6.6-6.7	0	6	6,65	0,78		
	6.8-6.9	3	6	6,85	0,78		
	7.0-7.1	2	3	7,05	0,48		
	7.2-7.3	0	1	7,25	0,00		
	7.4-7.5	7.5 0		7,45	0,00		
	7.6-7.7	0	1	7,65	0,00		
	7.8-7.9	1	1	7,85	0,00		

İnceleme alanında aletsel dönemde oluşmuş depremlerin Poisson dağılımına uyduğu varsayımı ile tamamlılık dikkate alınmadan ve alındığı durumlar için bölgenin tamamını temsil eden (14) ve (15) bağıntılarından yararlanarak inceleme alanına ait deprem tehlikesi hesaplamaları yapılmıştır. Çeşitli magnitüdlerdeki depremlerin gelecek 100 yıl içerisinde her 10'ar yıllık periyodlarda depremlerin aşılma olasılıkları R(M) ve ortalama oluş sayıları hesaplanan depremlerin tekrarlanma periyodları (Q) hesaplanmış (Tablo 6, Tablo 7) ve yıllara, magnitüdlere göre deprem olasılıkları (tehlike) çizdirilmiştir (Şekil 13, Şekil 14, Şekil 15, Şekil 16).

Tablo 6. İnceleme alanının tümünde oluşan depremlere tamamlılık analizi uygulanmadan elde edilen deprem tehlikesi değerleri.

Magnitüd(M)		Tekrarlama Periyodu (Q) Yıl									
	10	20	30	40	50	60	70	80	90	100	
4,0	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,60
4,5	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,29
5,0	0,97	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	2,77
5,5	0,81	0,96	0,99	1,00	1,00	1,00	1,00	1,00	1,00	1,00	5,97
6,0	0,54	0,79	0,90	0,96	0,98	0,99	1,00	1,00	1,00	1,00	12,84
6,5	0,30	0,52	0,66	0,76	0,84	0,89	0,92	0,94	0,96	0,97	27,64
7,0	0,15	0,29	0,40	0,49	0,57	0,64	0,69	0,74	0,78	0,81	59,49
7,5	0,08	0,14	0,21	0,27	0,32	0,37	0,42	0,46	0,50	0,54	128,03
8,0	0,04	0,07	0,10	0,14	0,17	0,20	0,22	0,25	0,28	0,30	275,56

Şekil 13. İnceleme alanının tümünde oluşan depremlere tamamlılık analizi uygulanmadan 10'ar yıllık periyodlar için belirlenen deprem olasılık (tehlikesi) değerleri.

Şekil 14. İnceleme alanının tümünde oluşan depremlere tamamlılık analizi uygulanmadan magnitüdlere göre belirlenen deprem olasılık (tehlikesi) değerleri.

	1			<u> </u>								
Magnitüd(M		Sismik Risk R(M) Periyot(Yıl)										
	10	20	30	40	50	60	70	80	90	100		
4,0	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,52	
4,5	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,17	
5,0	0,98	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	2,60	
5,5	0,82	0,97	0,99	1,00	1,00	1,00	1,00	1,00	1,00	1,00	5,81	
6,0	0,54	0,79	0,90	0,95	0,98	0,99	1,00	1,00	1,00	1,00	12,97	
6,5	0,29	0,50	0,65	0,75	0,82	0,87	0,91	0,94	0,96	0,97	28,96	
7,0	0,14	0,27	0,37	0,46	0,54	0,60	0,66	0,71	0,75	0,79	64,65	
7,5	0,07	0,13	0,19	0,24	0,29	0,34	0,38	0,43	0,46	0,50	144,34	
8,0	0,03	0,06	0,09	0,12	0,14	0,17	0,20	0,22	0,24	0,27	322,24	

Tablo 7. İnceleme alanının tümünde oluşan depremlere tamamlılık analizi uygulanmadan elde edilen deprem tehlikesi değerleri.

Şekil 15. İnceleme alanının tümünde oluşan depremlere tamamlılık analizi uygulanarak 10'ar yıllık periyodlar için belirlenen deprem olasılık (tehlike) değerleri.

Şekil 16. İnceleme alanının tümünde oluşan depremlere tamamlılık analizi uygulanarak magnitüdlere göre belirlenen deprem olasılık (tehlikesi) değerleri.

Aynı magnitüd değerleri için tamamlılık analizi uygulanmadan önce ve tamamlılık analizi uygulandıktan sonra depremlerin tekrarlanma periyodları karşılaştırıldığında; tamamlılık analizi uygulandıktan sonraki depremlerin tekrarlanma periyodları diğerine göre oldukça uzun çıkmaktadır. Oysa bölgede oluşan depremlerin gerek tarihsel gerekse aletsel dönem kayıtlarına bakıldığında depremlerin tekrarlanma periyodları çok uzun olmamaktadır. Bunun nedeni her bir bölge için zaten sınırlı sayıda olan deprem verilerinin daha da azalmış olmasıdır. Bunun sonucu olarak incelenecek her bir bölge için büyük depremleri tam olarak içeren uzun süreli deprem veri grubu kullanılmış ve magnitüdün alt sınırı olarak M_S=4.0 alınmıştır.

1.5.2. Samsun İli Depremselliği

Samsun ilinin depremselliğinin incelenmesinde Şekil 17'de gösterilen dikdörtgen çerçeve ile sınırlandırılmış alanda oluşan ve tamamlılık analizinden belirlenen $M_S \ge 4.0$ olan depremler kullanılmıştır.

Şekil 17. Samsun İlinde 1900-2016 yıllarında meydana gelen depremlerin büyüklüklerine göre episantr dağılım haritası.

Magnitüd aralığı için 0.1 sınıf aralığı kullanılarak birikimli frekanslar belirlenmiş (Tablo 8), En Küçük Kareler yaklaşımı ile (16) bağıntısında verilen magnitüd-frekans ilişkisi hesaplanmış ve Şekil 18'de doğrusal ilişkinin grafiği gözlemsel değerlerle birlikte çizdirilmiştir.

$$Log(Ni) = 4.25 - 0.65Ms$$
 (16)

Tablo 8. Samsun ili ve çevresinde 1900-2016 yılları arasında meydana gelmiş depremlerin 0.1 birim magnitüd aralığı ile sınıflanması, kümülatif frekans değerleri ve bölge için hesaplanan "a" ve "b" değerleri.

	Büyüklük (Ms)	Deprem Sayısı (N)	Ni	Ortalama Büyüklük	LogNi	а	b
	4.0-4.1	10	43	4,05	1,63	4,25	0,64
	4.2-4.3	4	33	4,25	1,52		
	4.4-4.5	9	29	4,45	1,46		
	4.6-4.7	6	20	4,65	1,30		
	4.8-4.9	2	14	4,85	1,15		
	5.0-5.1	2	12	5,05	1,08		
SAMSUN	5.2-5.3	3	10	5,25	1,00		
	5.4-5.5	3	7	5,45	0,85		
	5.6-5.7	1	4	5,65	0,60		
	5.8-5.9	2	3	5,85	0,48		
	6.0-6.1	0	1	6,05	0,00		
	6.2-6.3	0	1	6,25	0,00		
	6.4-6.5	0	1	6,45	0,00		
	6.6-6.7	0	1	6,65	0,00		
	6.8-6.9	0	1	6,85	0,00		
	7.0-7.1	1	1	7,05	0,00		

Şekil 18. Samsun ili ve çevresi için EKK yöntemi ile elde edilen Magnitüd-Frekans grafiği. R; ilişki katsayısı.

Çeşitli magnitüdlerdeki depremlerin gelecek 100 yıl içerisinde her 10'ar yıllık periyodlarda depremlerin aşılma olasılıkları R(M) ve ortalama oluş sayıları hesaplanan depremlerin tekrarlanma periyodları (Q) hesaplanmış (Tablo 9) ve yıllara, magnitüdlere göre deprem olasılıkları (tehlike) çizdirilmiştir (Şekil 19, Şekil 20).

<u>a050110111</u>											
Magnitüd(Ms)		Tekrarlama Periyodu (Q) Yıl									
	10	20	30	40	50	60	70	80	90	100	
4,0	0,94	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	3,5
4,5	0,74	0,93	0,98	1,00	1,00	1,00	1,00	1,00	1,00	1,00	7,4
5,0	0,48	0,73	0,86	0,92	0,96	0,98	0,99	0,99	1,00	1,00	15,5
5,5	0,27	0,46	0,60	0,71	0,79	0,84	0,88	0,92	0,94	0,95	32,4
6,0	0,14	0,26	0,36	0,45	0,52	0,59	0,64	0,69	0,73	0,77	67,8
6,5	0,07	0,13	0,19	0,25	0,30	0,34	0,39	0,43	0,47	0,51	142,0
7,0	0,03	0,07	0,10	0,13	0,15	0,18	0,21	0,24	0,26	0,29	297,2
7.5	0.02	0.03	0.05	0.06	0.08	0.09	0.11	0.12	0.13	0.15	622.1

Tablo 9. Samsun ili ve çevresinde oluşan depremlerden elde edilen deprem tehlikesi değerleri.

Şekil 19. Samsun ili ve çevresinde 10'ar yıllık periyodlar için belirlenen deprem olasılık (tehlike) değerleri.

Şekil 20. Samsun ili ve çevresinde magnitüdlere göre belirlenen deprem olasılık değerleri.

1.5.3. Ordu İli Depremselliği

Ordu ilinin depremselliğinin incelenmesinde Şekil 21'de gösterilen dikdörtgen çerçeve ile sınırlandırılmış alanda oluşan ve tamamlılık analizinden belirlenen $M_S \ge 4.0$ olan depremler kullanılmıştır.

Şekil 21. Ordu İlinde 1900-2016 yıllarında meydana gelen depremlerin büyüklüklerine göre episantr dağılım haritası.

Magnitüd aralığı için 0.1 sınıf aralığı kullanılarak birikimli frekanslar belirlenmiş (Tablo 10), En Küçük Kareler yaklaşımı ile (17) bağıntısında verilen magnitüd-frekans ilişkisi hesaplanmış ve Şekil 22'de doğrusal ilişkinin grafiği gözlemsel değerlerle birlikte çizdirilmiştir.

$$Log(Ni) = 3.14 - 0.47Ms$$
 (17)
Tablo 10. Ordu ili ve çevresinde 1900-2016 yılları arasında meydana gelmiş depremlerin 0.1 birim magnitüd aralığı ile sınıflanması, kümülatif frekans değerleri ve bölge için hesaplanan "a" ve "b" değerleri.

	Büyüklük (Ms)	Deprem Sayısı (N)	Ni	Ortalama Büyüklük	LogNi	а	b
	4.0-4.1	1	18	4,05	1,26	3,14	0,47
	4.2-4.3	3	17	4,25	1,23		
	4.4-4.5	5	14	4,45	1,15		
	4.6-4.7	3	9	4,65	0,95		
	4.8-4.9	1	6	4,85	0,78		
	5.0-5.1	1	5	5,05	0,70		
00011	5.2-5.3	1	4	5,25	0,60		
ORDU	5.4-5.5	0	3	5,45	0,48		
	5.6-5.7	1	3	5,65	0,48		
	5.8-5.9	0	2	5,85	0,30		
	6.0-6.1	1	2	6,05	0,30		
	6.2-6.3	0	1	6,25	0,00		
	6.4-6.5	0	1	6,45	0,00		
	6.6-6.7	0	1	6,65	0,00		
	6.8-6.9	0	1	6,85	0,00		
	7.0-7.1	1	1	7,05	0,00		

Şekil 22. Ordu ili ve çevresi için EKK yöntemi ile elde edilen Magnitüd-Frekans grafiği. R; ilişki katsayısı.

Çeşitli magnitüdlerdeki depremlerin gelecek 100 yıl içerisinde her 10'ar yıllık periyodlarda depremlerin aşılma olasılıkları R(M) ve ortalama oluş sayıları hesaplanan depremlerin tekrarlanma periyodları (Q) hesaplanmış (Tablo 11) ve yıllara, magnitüdlere göre deprem olasılıkları (tehlike) çizdirilmiştir (Şekil 23, Şekil 24).

Magnitüd(Ms)				Sisn	nik Risk R(I	VI) Periyot	(Yıl)				Tekrarlama Periyodu (Q) Yıl
	10	20	30	40	50	60	70	80	90	100	
4,0	0,75	0,94	0,98	1,00	1,00	1,00	1,00	1,00	1,00	1,00	7,1
4,5	0,56	0,80	0,91	0,96	0,98	0,99	1,00	1,00	1,00	1,00	12,3
5,0	0,38	0,61	0,76	0,85	0,90	0,94	0,96	0,98	0,99	0,99	21,3
5,5	0,24	0,42	0,56	0,66	0,74	0,81	0,85	0,89	0,91	0,93	36,6
6,0	0,15	0,27	0,38	0,47	0,55	0,61	0,67	0,72	0,76	0,79	63,2
6,5	0,09	0,17	0,24	0,31	0,37	0,42	0,47	0,52	0,56	0,60	108,9
7,0	0,05	0,10	0,15	0,19	0,23	0,27	0,31	0,35	0,38	0,41	187,9
7,5	0,03	0,06	0,09	0,12	0,14	0,17	0,19	0,22	0,24	0,27	323,9

Tablo 11. Ordu ili ve çevresinde oluşan depremlerden elde edilen deprem tehlikesi değerleri.

Şekil 23. Ordu ili ve çevresinde 10'ar yıllık periyodlar için belirlenen deprem olasılık (tehlike) değerleri.

Şekil 24. Ordu ili ve çevresinde magnitüdlere göre belirlenen deprem olasılık değerleri.

1.5.4. Giresun İli Depremselliği

Giresun ilinin depremselliğinin incelenmesinde Şekil 25'de gösterilen dikdörtgen çerçeve ile sınırlandırılmış alanda oluşan ve tamamlılık analizinden belirlenen $M_S \ge 4.0$ olan depremler kullanılmıştır.

Şekil 25. Giresun İlinde 1900-2016 yıllarında meydana gelen depremlerin büyüklüklerine göre episantr dağılım haritası.

Magnitüd aralığı için 0.1 sınıf aralığı kullanılarak birikimli frekanslar belirlenmiş (Tablo 12), En Küçük Kareler yaklaşımı ile (18) bağıntısında verilen magnitüd-frekans ilişkisi hesaplanmış ve Şekil 26'da doğrusal ilişkinin grafiği gözlemsel değerlerle birlikte çizdirilmiştir.

$$Log(Ni) = 3.83 - 0.57Ms$$
 (18)

Tablo 12. Giresun ili ve çevresinde 1900-2016 yılları arasında meydana gelmiş depremlerin 0.1 birim magnitüd aralığı ile sınıflanması, kümülatif frekans değerleri ve bölge için hesaplanan "a" ve "b" değerleri.

	Büyüklük (Ms)	Deprem Sayısı (N)	Ni	Ortalama Büyüklük	LogNi	а	b
	4.0-4.1	4	25	4,05	1,40	3,83	0,57
	4.2-4.3	2	21	4,25	1,32		
	4.4-4.5	3	19	4,45	1,28		
	4.6-4.7	3	16	4,65	1,20		
	4.8-4.9	4	13	4,85	1,11		
GİRESUN	5.0-5.1	2	9	5,05	0,95		
	5.2-5.3	0	7	5,25	0,85		
	5.4-5.5	2	7	5,45	0,85		
	5.6-5.7	1	5	5,65	0,70		
	5.8-5.9	2	4	5,85	0,60		
	6.0-6.1	1	2	6,05	0,30		
	6.2-6.3	1	1	6,25	0,00		

Şekil 26. Giresun ili ve çevresi için EKK yöntemi ile elde edilen Magnitüd-Frekans grafiği. R; ilişki katsayısı.

Çeşitli magnitüdlerdeki depremlerin gelecek 100 yıl içerisinde her 10'ar yıllık periyodlarda depremlerin aşılma olasılıkları R(M) ve ortalama oluş sayıları hesaplanan depremlerin tekrarlanma periyodları (Q) hesaplanmış (Tablo 13) ve yıllara, magnitüdlere göre deprem olasılıkları (tehlike) çizdirilmiştir (Şekil 27, Şekil 28).

aegemen											
Magnitüd(Ms)				Sisn	nik Risk R(I	M) Periyot	t(Yıl)				Tekrarlama Periyodu (Q) Yıl
	10	20	30	40	50	60	70	80	90	100	
4,0	0,90	0,99	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	4,4
4,5	0,69	0,90	0,97	0,99	1,00	1,00	1,00	1,00	1,00	1,00	8,6
5,0	0,45	0,70	0,84	0,91	0,95	0,97	0,99	0,99	1,00	1,00	16,5
5,5	0,27	0,47	0,61	0,71	0,79	0,85	0,89	0,92	0,94	0,96	32,0
6,0	0,15	0,28	0,38	0,48	0,55	0,62	0,68	0,73	0,77	0,80	61,8
6,5	0,08	0,15	0,22	0,28	0,34	0,39	0,44	0,49	0,53	0,57	119,4
7,0	0,04	0,08	0,12	0,16	0,19	0,23	0,26	0,29	0,32	0,35	230,9

Tablo 13. Giresun ili ve çevresinde oluşan depremlerden elde edilen deprem tehlikesi değerleri.

Şekil 27. Giresun ili ve çevresinde 10'ar yıllık periyodlar için belirlenen deprem olasılık (tehlike) değerleri.

Şekil 28. Giresun ili ve çevresinde magnitüdlere göre belirlenen deprem olasılık değerleri.

1.5.5. Trabzon İli Depremselliği

Trabzon ilinin depremselliğinin incelenmesinde Şekil 29'da gösterilen dikdörtgen çerçeve ile sınırlandırılmış alanda oluşan ve tamamlılık analizinden belirlenen $M_S \ge 4.0$ olan depremler kullanılmıştır.

Şekil 29. Trabzon İli'nde 1900-2015 yıllarında meydana gelen depremlerin büyüklüklerine göre episantr dağılım haritası.

Magnitüd aralığı için 0.1 sınıf aralığı kullanılarak birikimli frekanslar belirlenmiş (Tablo 14), En Küçük Kareler yaklaşımı ile (19) bağıntısında verilen magnitüd-frekans ilişkisi hesaplanmış ve Şekil 30'da doğrusal ilişkinin grafiği gözlemsel değerlerle birlikte çizdirilmiştir.

$$Log(Ni) = 2.40 - 0.48Ms$$
 (19)

Tablo 14. Trabzon ili ve çevresinde 1900-2016 yılları arasında meydana gelmiş depremlerin 0.1 birim magnitüd aralığı ile sınıflanması, kümülatif frekans değerleri ve bölge için hesaplanan "a" ve "b" değerleri.

_	Büyüklük (Ms)	Deprem Sayısı (N)	Ni	Ortalama Büyüklük	LogNi	а	b
	4.0-4.1	1	3	4,05	0,48	2,40	0,48
	4.2-4.3	0	2	4,25	0,30		
TRABZON	4.4-4.5	0	2	4,45	0,30		
	4.6-4.7	1	2	4,65	0,30		
	4.8-4.9	1	1	4,85	0,00		

Şekil 30. Trabzon ili ve çevresi için EKK yöntemi ile elde edilen Magnitüd-Frekans grafiği. R; ilişki katsayısı.

Çeşitli magnitüdlerdeki depremlerin gelecek 100 yıl içerisinde her 10'ar yıllık periyodlarda depremlerin aşılma olasılıkları R(M) ve ortalama oluş sayıları hesaplanan depremlerin tekrarlanma periyodları (Q) hesaplanmış (Tablo 15) ve yıllara, magnitüdlere göre deprem olasılıkları (tehlike) çizdirilmiştir (Şekil 31, Şekil 32).

Magnitüd(Ms)				Sisn	nik Risk R(I	M) Periyot	(Yıl)				Tekrarlama Periyodu (Q) Yıl
	10	20	30	40	50	60	70	80	90	100	
4,0	0,22	0,38	0,52	0,62	0,70	0,77	0,82	0,86	0,89	0,91	41,2
4,5	0,13	0,24	0,34	0,43	0,50	0,57	0,63	0,67	0,72	0,75	71,3
5,0	0,08	0,15	0,22	0,28	0,33	0,38	0,43	0,48	0,52	0,56	123,5
5,5	0,05	0,09	0,13	0,17	0,21	0,24	0,28	0,31	0,34	0,37	213,9

 Tablo 15. Trabzon ili ve çevresinde oluşan depremlerden elde edilen deprem tehlikesi değerleri.

Şekil 31. Trabzon ili ve çevresinde 10'ar yıllık periyodlar için belirlenen deprem olasılık (tehlike) değerleri.

Şekil 32. Trabzon ili ve çevresinde magnitüdlere göre belirlenen deprem olasılık değerleri.

1.5.6. Artvin İli Depremselliği

Artvin ilinin depremselliğinin incelenmesinde Şekil 33'de gösterilen dikdörtgen çerçeve ile sınırlandırılmış alanda oluşan ve tamamlılık analizinden belirlenen $M_S \ge 4.0$ olan depremler kullanılmıştır.

Şekil 33. Artvin İli'nde 1900-2015 yıllarında meydana gelen depremlerin büyüklüklerine göre episantr dağılım haritası.

Magnitüd aralığı için 0.1 sınıf aralığı kullanılarak birikimli frekanslar belirlenmiş (Tablo 16), En Küçük Kareler yaklaşımı ile (20) bağıntısında verilen magnitüd-frekans ilişkisi hesaplanmış ve Şekil 34'da doğrusal ilişkinin grafiği gözlemsel değerlerle birlikte çizdirilmiştir.

$$Log(Ni) = 5.06 - 0.87Ms$$
 (20)

Tablo 16. Artvin ili ve çevresinde 1900-2016 yılları arasında meydana gelmiş depremlerin 0.1 birim magnitüd aralığı ile sınıflanması, kümülatif frekans değerleri ve bölge için hesaplanan "a" ve "b" değerleri.

	·	Büyüklük (Ms)	Deprem Sayısı (N)	Ni	Ortalama Büyüklük	LogNi	а	b
		4.0-4.1	7	34	4,05	1,53	5,06	0,87
		4.2-4.3	4	27	4,25	1,43		
		4.4-4.5	12	23	4,45	1,36		
		4.6-4.7	6	11	4,65	1,04		
A	RTVIN	4.8-4.9	1	5	4,85	0,70		
		5.0-5.1	0	4	5,05	0,60		
		5.2-5.3	2	4	5,25	0,60		
		5.4-5.5	1	2	5,45	0,30		
		5.6-5.7	0	1	5,65	0,00		
		5.8-5.9	0	1	5,85	0,00		
		6.0-6.1	1	1	6,05	0,00		

Şekil 34. Artvin ili ve çevresi için EKK yöntemi ile elde edilen Magnitüd-Frekans grafiği. R; ilişki katsayısı.

Çeşitli magnitüdlerdeki depremlerin gelecek 100 yıl içerisinde her 10'ar yıllık periyodlarda depremlerin aşılma olasılıkları R(M) ve ortalama oluş sayıları hesaplanan depremlerin tekrarlanma periyodları (Q) hesaplanmış (Tablo 17) ve yıllara, magnitüdlere göre deprem olasılıkları (tehlike) çizdirilmiştir (Şekil 35, Şekil 36).

											-
Magnitüd(Ms)				Sism	nik Risk R(1	VI) Periyot	(Yıl)				Tekrarlama Periyodu (Q) Yıl
	10	20	30	40	50	60	70	80	90	100	
4,0	0,81	0,96	0,99	1,00	1,00	1,00	1,00	1,00	1,00	1,00	6,1
4,5	0,45	0,70	0,84	0,91	0,95	0,97	0,99	0,99	1,00	1,00	16,6
5,0	0,20	0,36	0,48	0,59	0,67	0,73	0,79	0,83	0,86	0,89	45,3
5,5	0,08	0,15	0,22	0,28	0,33	0,39	0,43	0,48	0,52	0,56	123,4
6,0	0,03	0,06	0,09	0,11	0,14	0,16	0,19	0,21	0,24	0,26	335,9
6,5	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09	0,10	914,5

Tablo 17. Artvin ili ve çevresinde oluşan depremlerden elde edilen deprem tehlikesi değerleri.

Şekil 35. Artvin ili ve çevresinde 10'ar yıllık periyodlar için belirlenen deprem olasılık (tehlike) değerleri.

Şekil 36. Artvin ili ve çevresinde magnitüdlere göre belirlenen deprem olasılık değerleri.

1.5.7. Gümüşhane İli Depremselliği

Gümüşhane ilinin depremselliğinin incelenmesinde Şekil 37'de gösterilen dikdörtgen çerçeve ile sınırlandırılmış alanda oluşan ve tamamlılık analizinden belirlenen $M_S \ge 4.0$ olan depremler kullanılmıştır.

Şekil 37. Gümüşhane İli'nde 1900-2015 yıllarında meydana gelen depremlerin büyüklüklerine göre episantr dağılım haritası.

Magnitüd aralığı için 0.1 sınıf aralığı kullanılarak birikimli frekanslar belirlenmiş (Tablo 18), En Küçük Kareler yaklaşımı ile (21) bağıntısında verilen magnitüd-frekans ilişkisi hesaplanmış ve Şekil 38'de doğrusal ilişkinin grafiği gözlemsel değerlerle birlikte çizdirilmiştir.

$$Log(Ni) = 3.50 - 0.48Ms$$
 (21)

	Büyüklük (Ms)	Deprem Sayısı (N)	Ni	Ortalama Büyüklük	LogNi	а	b
	4.0-4.1	7	43	4,05	1,63	3,50	0,48
	4.2-4.3	4	36	4,25	1,56		
	4.4-4.5	8	32	4,45	1,51		
	4.6-4.7	6	24	4,65	1,38		
	4.8-4.9	6	18	4,85	1,26		
	5.0-5.1	3	12	5,05	1,08		
	5.2-5.3	3	9	5,25	0,95		
	5.4-5.5	1	6	5,45	0,78		
	5.6-5.7	1	5	5,65	0,70		
GUMUŞHANE	5.8-5.9	0	4	5,85	0,60		
	6.0-6.1	1	4	6,05	0,60		
	6.2-6.3	1	3	6,25	0,48		
	6.4-6.5	0	2	6,45	0,30		
	6.6-6.7	0	2	6,65	0,30		
	6.8-6.9	1	2	6,85	0,30		
	7.0-7.1	0	1	7,05	0,00		
	7.2-7.3	0	1	7,25	0,00		
-	7.4-7.5	0	1	7,45	0,00		
	7.6-7.7	0	1	7,65	0,00		
	7.8-7.9	1	1	7,85	0,00		

Tablo 18. Gümüşhane ili ve çevresinde 1900-2016 yılları arasında meydana gelmiş depremlerin 0.1 birim magnitüd aralığı ile sınıflanması, kümülatif frekans değerleri ve bölge için hesaplanan "a" ve "b" değerleri.

Şekil 38. Gümüşhane ili ve çevresi için EKK yöntemi ile elde edilen Magnitüd-Frekans grafiği. R; ilişki katsayısı.

Çeşitli magnitüdlerdeki depremlerin gelecek 100 yıl içerisinde her 10'ar yıllık periyodlarda depremlerin aşılma olasılıkları R(M) ve ortalama oluş sayıları hesaplanan depremlerin tekrarlanma periyodları (Q) hesaplanmış (Tablo 19) ve yıllara, magnitüdlere göre deprem olasılıkları (tehlike) çizdirilmiştir (Şekil 39, Şekil 40).

Magnitüd(M)				Sisn	nik Risk R(I	VI) Periyot	:(Yıl)				Tekrarlama Periyodu (Q) Yıl
	10	20	30	40	50	60	70	80	90	100	
4,0	0,96	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	3,20
4,5	0,84	0,97	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	5,54
5,0	0,65	0,88	0,96	0,98	0,99	1,00	1,00	1,00	1,00	1,00	9,57
5,5	0,45	0,70	0,84	0,91	0,95	0,97	0,99	0,99	1,00	1,00	16,55
6,0	0,30	0,50	0,65	0,75	0,83	0,88	0,91	0,94	0,96	0,97	28,60
6,5	0,18	0,33	0,45	0,55	0,64	0,70	0,76	0,80	0,84	0,87	49,45
7,0	0,11	0,21	0,30	0,37	0,44	0,50	0,56	0,61	0,65	0,69	85,47
7,5	0,07	0,13	0,18	0,24	0,29	0,33	0,38	0,42	0,46	0,49	147,75
8,0	0,04	0,08	0,11	0,14	0,18	0,21	0,24	0,27	0,30	0,32	255,41

 Tablo 19. Gümüşhane ili ve çevresinde oluşan depremlerden elde edilen deprem tehlikesi değerleri.

Şekil 39. Gümüşhane ili ve çevresinde 10'ar yıllık periyodlar için belirlenen deprem olasılık (tehlike) değerleri.

Şekil 40. Gümüşhane ili ve çevresinde magnitüdlere göre belirlenen deprem olasılık değerleri.

1.5.8. Bayburt İli Depremselliği

Bayburt ilinin depremselliğinin incelenmesinde Şekil 41'de gösterilen dikdörtgen çerçeve ile sınırlandırılmış alanda oluşan ve tamamlılık analizinden belirlenen $M_S \ge 4.0$ olan depremler kullanılmıştır.

Şekil 41. Bayburt İli'nde 1900-2015 yıllarında meydana gelen depremlerin büyüklüklerine göre episantr dağılım haritası.

Magnitüd aralığı için 0.1 sınıf aralığı kullanılarak birikimli frekanslar belirlenmiş (Tablo 20), En Küçük Kareler yaklaşımı ile (22) bağıntısında verilen magnitüd-frekans ilişkisi hesaplanmış ve Şekil 42'de doğrusal ilişkinin grafiği gözlemsel değerlerle birlikte çizdirilmiştir.

$$Log(Ni) = 4.33 - 0.68Ms$$
 (22)

Tablo 20. Bayburt ili ve çevresinde 1900-2016 yılları arasında meydana gelmiş depremlerin 0.1 birim magnitüd aralığı ile sınıflanması, kümülatif frekans değerleri ve bölge için hesaplanan "a" ve "b" değerleri.

	Büyüklük (Ms)	Deprem Sayısı (N)	Ni	Ortalama Büyüklük	LogNi	а	b
	4.0-4.1	6	43	4,05	1,63	4,34	0,68
	4.2-4.3	10	37	4,25	1,57		
	4.4-4.5	8	27	4,45	1,43		
	4.6-4.7	6	19	4,65	1,28		
	4.8-4.9	6	13	4,85	1,11		
	5.0-5.1	2	7	5,05	0,85		
BAYBURT	5.2-5.3	2	5	5,25	0,70		
	5.4-5.5	1	3	5,45	0,48		
	5.6-5.7	0	2	5,65	0,30		
	5.8-5.9	1	2	5,85	0,30		
	6.0-6.1	0	1	6,05	0,00		
	6.2-6.3	0	1	6,25	0,00		
	6.4-6.5	0	1	6,45	0,00		
	6.6-6.7	0	1	6,65	0,00		
	6.8-6.9	1	1	6,85	0,00		

Şekil 42. Bayburt ili ve çevresi için EKK yöntemi ile elde edilen Magnitüd-Frekans grafiği. R; ilişki katsayısı.

Çeşitli magnitüdlerdeki depremlerin gelecek 100 yıl içerisinde her 10'ar yıllık periyodlarda depremlerin aşılma olasılıkları R(M) ve ortalama oluş sayıları hesaplanan depremlerin tekrarlanma periyodları (Q) hesaplanmış (Tablo 21) ve yıllara, magnitüdlere göre deprem olasılıkları (tehlike) çizdirilmiştir (Şekil 43, Şekil 44).

<u></u>											
Magnitüd(Ms)				Sisn	nik Risk R(I	M) Periyot	:(Yıl)				Tekrarlama Periyodu (Q) Yıl
	10	20	30	40	50	60	70	80	90	100	
4,0	0,90	0,99	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	4,4
4,5	0,65	0,87	0,96	0,98	0,99	1,00	1,00	1,00	1,00	1,00	9,6
5,0	0,38	0,61	0,76	0,85	0,91	0,94	0,96	0,98	0,99	0,99	21,0
5,5	0,20	0,35	0,48	0,58	0,66	0,73	0,78	0,82	0,86	0,89	46,0
6,0	0,09	0,18	0,26	0,33	0,39	0,45	0,50	0,55	0,59	0,63	100,7
6,5	0,04	0,09	0,13	0,17	0,20	0,24	0,27	0,30	0,34	0,36	220,4
7,0	0,02	0,04	0,06	0,08	0,10	0,12	0,14	0,15	0,17	0,19	482,2

Tablo 21. Bayburt ili ve çevresinde oluşan depremlerden elde edilen deprem tehlikesi değerleri.

Şekil 43. Bayburt ili ve çevresinde 10'ar yıllık periyodlar için belirlenen deprem olasılık (tehlike) değerleri.

Şekil 44. Bayburt ili ve çevresinde magnitüdlere göre belirlenen deprem olasılık değerleri.

1.6. İncelenen Alanın Tümü için Deterministik Deprem Tehlikesi

Deterministik olarak belirlenen deprem tehlikesi, zaman boyutundan bağımsız olarak, bölgede meydana gelebilecek en büyük depremin yaratacağı yer hareketinin düzeyidir. Bu çalışmada inceleme alanının tamamı için deterministik deprem tehlike haritaları KAFZ üzerinde oluşabilecek M_S =7.9 magnitüdlü 26.12.1939 Erzincan (Şekil 45) ve M_S =7.0 magnitüdlü 20.11.1942 Tokat (Şekil 46) depremlerinin bu alan sınırları içinde oluşturabileceği şiddet ve ivme değerleri kullanılarak hazırlanmıştır.

Bu depremler neticesinde oluşacak zemin-bağımsız deprem şiddetleri Erdik ve diğ. (1983) tarafından KAFZ boyunca oluşan depremlerle ilişkili olarak var olan eşşiddet haritalarından yararlanarak fay izine dik olacak şekilde geliştirilen ve (23) bağıntısında verilen azalım ilişkisi kullanılarak hesaplanmıştır.

$$I = 0.34 + 1.54M_{\rm S} - 1.24\ln R \tag{23}$$

Burada; I: MSK ölçeğinde şiddet, M_S: Yüzey dalgası magnitüdü, R: Faya en yakın (km cinsinden) uzaklıktır. İnceleme alanının ivme dağılım haritası İnan (1998) tarafından 1976 yılından beri Türkiye'de kaydedilen 418 ivme kaydının maksimum yatay bileşenini kullanarak elde ettikleri (24) bağıntısı ile verilen azalım ilişkisi kullanılarak hesaplanmıştır.

$$LogPA = 0.56M - 0.827 log R - 0.236$$
(24)

Burada; PA: Maksimum yatay ivme (gal=cm/sn² cinsinden), M: Magnitüd, R: Faya olan en kısa (km. cinsinden) uzaklıktır.

Şekil 45. KAFZ üzerinde oluşabilecek M_s =7.9 magnitüdlü Erzincan depreminin bu alan sınırları içinde oluşturabileceği eşşiddet ve eş-ivme haritaları.

Şekil 46. KAFZ üzerinde oluşabilecek M_s =7.0 magnitüdlü Tokat depreminin bu alan sınırları içinde oluşturabileceği eşşiddet ve eş-ivme haritaları.

2. SİSMİK VE ELEKTRİK ÖLÇÜM ANALİZLERİ

Jeofizik mühendisliği yöntemlerinden sismik ve elektrik özdirenç yöntemleri, depolama alanının zemininin (toprak+kaya) jeoteknik özelliklerinin, dinamik elastik parametrelerinin ve yeraltı su seviyesinin belirlenmesinde vazgeçilmez ve en yaygın kullanım alanına sahip yöntemlerdir.

Bu proje kapsamında Sismik ölçümler, sismik kırılma ve yüzey dalgası analiz (MASW) ölçümlerini ve elektrik özdirenç ölçümler ise tomografik ölçümleri içermektedir. Buna göre toplam 25 adet sismik kırılma, 25 adet MASW ve 25 adet elektrik tomografi ölçümü yapılmıştır. Yapılan tüm ölçümlerden elde edilen verilerin analiz ve yorumları aşağıda verilmiştir. P-dalgası kayıtlarından depolama alanının sismik profiller boyunca tabaklanma geometrisi belirlenmiş ve yüzey dalgası analizlerinden S-dalgası derinlik-hız profili hesaplanmıştır. Elde edilen P- ve S- dalga hızlarından ortama ait dinamik parametreler, Young modülü, kayma modülü, hacim modülü, yatak katsayısı, emniyetli taşıma gücü, Poisson oranı, gözeneklilik değerleri elde edilmiştir. Bu bilgiler birlikte yorumlanarak depolama alanının zemin karakteri ortaya koyulmuş ve katı atık depolama için uygunluğu değerlendirilmiştir. Elektrik ölçümlerden yeraltı su seviyesi, killi birimlerin varlığı, geçirimligeçirimsiz seviyelerin varlığı belirlenmeye çalışılmış ve depolama açısından yorumlanmıştır.

Sismik yöntemlerin esası elastik dalgaların yer içinde kırılma ve yansıma ilkelerine bağlıdır. Yüzeyde suni bir kaynak vasıtasıyla oluşturulan deformasyondan (gerilme ve yamulma) dolayı oluşan boyuna (P-dalgaları) ve enine (S-dalgaları) dalgalar yer içinde elastik empedans (yoğunluk değişimi ihmal edilirse sadece hız değişimine bağlı akustik empedans) değişimi olan yüzeylerde yansır, kırılır ve tekrar yüzeye dönerek alıcılarda zamanın fonksiyonu olarak kaydedilir. Kaydedilen bu varışlar amaca göre analiz edilerek (Şekil 1) yer içine ait boyuna (P)-V_p ve enine (S)-V_s dalgası hızları ve bu hızlara bağlı olarak birçok elastik parametre hesaplanarak yer içinin jeoteknik değerlendirmesi yapılır.

Şekil 47. Sismik yöntemlerde veri toplama, toplanan veri örneği ve bu verinin farklı kısımlarından elde edilen çıktıların şematik gösterimi.

Elektrik özdirenç yöntemleri yere verilen akımın yer içinde yayılırken yer içi malzemelerinin elektrik akımına karşı direnç özelliklerine göre oluşan potansiyel farkın değişiminin ve dolayısıyla görünür özdirencin ölçülmesi esası üzerine geliştirilen yöntemlerdir (Şekil 2). Elektrik özdirenç temel hedef yeraltı su seviyesinin ve su akış rejiminin belirlenmesidir. Çünkü depolama alanı yer seçimlerinde temel husus, atıklardan sızması muhtemel olan kirli suların yeraltı suyuna karışmasının önlenmesi ve bu yönde gerekli tedbirlerin alınması son derece önem arz etmektedir. Bununla birlikte, geçirimlilik, nemlilik, tuzluluk, boşluk ve ayrışma derecelerinin belirlenmesinde (çökme ve oturma durumları) çok etkin ve yaygın kullanılan bir yöntemdir. Ayrıca, sismik yöntemlerle karşılaştırma yapma açısından temel kaya derinliği ve topoğrafyası, yanal ve düşey yöndeki litolojik değişim, fay ve çatlak sistemleri gibi kırıklı yapılar tespitinde etkin olarak kullanılmaktadır.

Şekil 48. Elektrik özdirenç yönteminde veri toplama ve bu veriden elde edilen tomografik yer kesitinin şematik gösterimi.

2.1. Sismik ve Elektrik Veri Toplama

Sismik ölçümlerde 80876 seri numaralı Seistronix Ras-24 marka sismograf, 4.5 Hz' lik 12 adet düşey bileşenli jeofon (P-jeofonu), kaynak olarak 9 kg ağırlığındaki balyoz ve çelik levha (20x20x5cm) kullanılmıştır. Her bir profilde sismik kırılma ölçümü için 5 atış (kaynak noktaları: 0, 19.5, 28.5, 37.5 ve 57 m.) yapılmıştır. Tüm sismik ölçümler için jeofon aralıkları 3 m. ve ilk alıcı mesafesi 12 metredir. Kayıt parametreleri sismik kırılma için zaman örnekleme aralığı 0.25 msn. ve kayıt uzunluğu 0.5 sn, MASW ölçümleri için ise örnekleme aralığı 0.5 msn. ve kayıt uzunluğu 1.0 sn olarak seçilmiştir. Her bir atış noktasında verilerin sinyal/gürültü oranını güçlendirmek için 3 vuruş yapılarak elde edilen kayıtlar üst üste aritmetik olarak toplanarak düşey yığma yapılmıştır.

Elektrik özdirenç tomografi verileri Ambrogeo marka, Mangusta model 48 elektrotlu cihaz ve ekipmanları ile toplanmıştır. Elektrot aralıkları ölçüm yerlerindeki arazi şartları göz önüne alınarak 3m (Ordu İli Işıktepe-1, 2; Giresun İli Ağalık-1, 2; Trabzon İli Ovacık-1, 2 profilleri), 4m (Gümüşhane İli Kazantaş-2 profili) ve 5m (Samsun İli Vezirköprü-1,2 ve Bafra-1,2; Ordu İli Esence-1,2; Trabzon İli Çamburnu-1,2; Artvin İli Murgul-1,2; Gümüşhane İli Yenice-1,2 ve Kazantaş-1; Bayburt İli Merkez-1,2 ve Balkaynak-1 profilleri) olacak şekilde belirlenmiştir. Çalışmada toplam 24 elektrot kullanılmıştır.

2.2. Sismik ve Elektrik Verilerin Değerlendirilmesi

Sismik verilerin tüm analizleri SeisImager yazılımı ve elektrik verilerin tüm analizleri Res2Dınv yazılımları ile gerçekleştirilmiştir. Sismik veriler geleneksel sismik kırılma veri toplama düzeninde kaydedilmiş olup, tomografik ters çözüm yöntemi ile değerlendirilmiştir. Bunun için her bir sismik kayıttan ilk varış zamanları okunmuş ve tomografik ters çözüm ile ilgili profillere ait olan yer altı P dalgası hız kesitleri elde edilmiştir. Elde edilen bu hız kesitleri üzerinden ortama ait tabakalanma durumu ve her bir tabakaya ait P dalgası hız değerleri belirlenmiştir. Her bir profile ait MASW kayıtlarının yüzey dalgası dalga alanlarından Rayleigh dalgası dispersiyon eğrisi frekans hız dönüşümü sayesinde belirlenmiş ve elde dilen bu dispersiyon eğrisinin ters çözümünden ortama ait 1 boyutlu S dalgası (Kayma dalgası) hız-derinlik profilleri hesaplanmıştır. Bu profillerden derinlik boyunca P dalgası hız-derinlik değişimine karşılık gelecek şekilde ortalama S dalgası hız değerleri belirlenmiştir.

Özdirenç yönteminde, 2 boyutlu kesit oluşturmak için en fazla uygulanan yöntem tomografi ölçümleridir. Bu yöntemle, yeraltındaki kayaçların özdirençlerine bağımlı olan görünür özdirenç belirlenerek, yer içinin jeolojik yapısı elektrik (özdirenç) özelliğine göre haritalanır. Bu çalışmada elektrik özdirenç verileri "Wenner – Schlumberger" dizilimi kullanılarak toplanmış ve "En Küçük Kareler" ters çözüm yöntemi kullanılarak değerlendirilmiştir. Arazi çalışması esnasında her bir elektrot için kot değerleri el GPS yardımı ile okunmuş, veri işlem aşamasında yüzey topografyası bilgileri verilere eklenmiştir.

Sismik verilerin değerlendirilmesi sonuncunda elde edilen sismik hız bilgileri kullanılarak hesaplanan dinamik-elastik parametreler il ilgili kısa bilgilendirme aşağıda sunulmuştur.

2.2.1. Dinamik – Elastik Parametreler

Hesaplanan zemin dinamik-elastik parametreleri (mühendislik parametreleri) sırası ile;

- a) P (boyuna) Dalga Hızı (V_p,m/sn)
- b) S (kayma) Dalga Hızı (V_s,m/sn)
- c) Vp/Vs Orani
- *d)* Elastisite (Young) Modülü (E, kg/cm²)
- e) Kayma (Shear) Modülü (μ,kg/cm²)
- f) Bulk (Sıkışmazlık) Modülü (K,kg/cm²)
- g) Poisson Orani (σ)
- h) Yoğunluk (d, gr/cm^3)
- *i)* Zemin Hakim Titreşim Periyodu (T_o, sn)
- *j)* Emniyetli Taşıma Gücü (Qe, kg/cm²)
- *k)* Zemin Yatak Katsayısı (Ks, ton/m³)
- *l*) *Porozite* (*φ*, %)
- m) Zemin Oturma Miktarı (Az, cm)

a) P (boyuna) Dalga Hızı (V_p, m/sn)

Bu tür dalgalar, sıkışma veya genleşme dalgaları olarak da adlandırılırlar. Bu dalgaların yayınımı sırasında sıkışmadan dolayı kübik genleşme veya hacim değişikliği olur. Boyuna dalgalarda sıkışma ve genleşmeyi temsil eden titreşim doğrultusu dalga yayınım doğrultusuyla aynıdır. Dolayısıyla sıkışabilir (gevşek) zeminlerde P dalgası hızı düşük, sıkışması zor zeminlerde (kaya) P dalgası hızı yüksek çıkacaktır. Buna göre P dalgası hızına bağlı olarak kayaçların sökülebilirlik dereceleri Tablo 22'de verilmiştir.

P dalgası hızı (m/sn)	Sökülebilirlik
300-600	Çok kolay
600-900	Kolay
900-1500	Orta
1500-2100	Zor
2100-2400	Çok zor
2400-2700	Son derece zor

Tablo 22. P dalgası hızı ile zeminlerin ya da kayaçların sökülebilirlikleri (Keçeli, 2012)

b) S (kayma) Dalga Hızı (Vs,m/sn)

Kayma dalgaları kesme gerilmeleri sonucunda oluşur. Dolayısı ile bu dalgaların yayınımı sırasında taneciklerde şekil bozulmaları, yani açılarda değişim gözlenir. Bunun nedeni de dalga yayınımında parçacıkların titreşim doğrultusunun, dalga yayınım doğrultusuna dik olmasındandır. Doğal olarak kayma dalgası hızları malzemenin şekil bozunumuna veya burulmaya karşı direnci varsa meydana gelmektedir. Sıvılarda genel olarak kesme gerilmeleri oluşmadığı için S dalgaları sıvılarda oluşmaz ve yayılmaz (Vs=0). Buna karşılık P dalgası hızı sıvılarda 1450 – 1550 m/sn arasında değişim gösterir. S dalga hızları herhangi bir jeolojik ortamın jeoteknik değerlendirilmesi (sıkılık-katılık, yumuşaklık-gevşeklik) ve zemin sınıflaması için temel teşkil eder (Tablo 23).

Tablo 23. S (kayma veya kesme) dalga hızlarına göre kaya ve zeminlerin sınıflandırılması (Keçeli, 2012).

Kayma Hızı (m/sn)	yma Dalgası zı Yerel Birim Türü /sn)		Zemin Grubu
<200		Yumuşak kil, siltli kil	D
<200		Gevşek kum	D
<200		Yer altı su düzeyinin yüksek olduğu yumuşak- suya doygun kalın alüvyonlu katmanlar	D
200-300		Katı kil –siltli kil	С
200-400 Orta sıkı kum, çakıl		С	

400-700	Yumuşak süreksizlik düzlemleri bulunan çok ayrışmış metamorfik kayaçlar ve	С
	çımentolu kayaçlar	
300-700	Çok katı kıl, sıltlı kıl	B
400-700	Çok katı kum ,çakıl	B
700-1000	Tüf ve aglomera gibi gevşek volkanik kayaçlar süreksizlik düzlemleri bulunan ayrışmış çimentolu tortul kayaçlar	
>700	Sert kil siltli kil	A
>700	Çok sıkı kum, çakıl	A
>1000	Masif volkanik kayaçlar ve ayrışmamış sağlam metamorfik kayaçlar sert ve çimento tortul kayaçlar	A

c) Elastisite Modülü (E, kg/cm²)

Bir doğrultuda streslerin (gerilmelerin), strainlere (deformasyonlara) oranı olarak tanımlanır. Başka bir deyişle uygulanan düşey basınç yönünde yerin düşey yamulmasını tanımlar. Bu değer temel zeminin oturmaya karşı dirençli olup olmadığını gösterir.

 $E=2*d*Vs^2(1+\sigma)/100$ (kg/cm²) formülü ile hesaplanır.

Tablo 24. Elastisite modülü değerlerine göre zemin ya da kayaçların dayanımı (Keçeli, 2012)

Elastisite Modülü - E- kg/cm ²	Dayanım
<1000	Çok zayıf
1000-5000	Zayıf
5000-10000	Orta
10000-30000	Sağlam
>30000	Çok Sağlam

d) Kayma (Shear) Modülü (µ,kg/cm²)

Makaslama gerilmelerine yani yatay kuvvetlere karşı formasyonun direncini gösterir. Sıvıların makaslamaya karşı direnci olmadığından bu parametre sıfırdır. Kayma modülü ne kadar yüksekse, formasyonun makaslama gerilmelerine yani yatay kuvvetlere (yatay deprem yükü) karşı direnci o kadar fazla demektir. Ayrıca bu değer temel zemininin sıkı-gevşek ve katı-yumuşak zemin olduğunu göstermektedir.

Kayma Modülü 2 şekilde hesaplanır;

 $\mu = d*V_s^2/100 (kg/cm^2)$ formülünden hesaplanır.

Kayma (Shear) Modülü (µ,kg/cm²)	Dayanım
<400	Çok zayıf
400-1500	Zayıf
1500-3000	Orta
3000-10000	Sağlam
>10000	Çok sağlam

Tablo 25. Kayma modülü değerlerine göre zemin yada kayaçların dayanımı (Keçeli, 2012)

e) Bulk (Sıkışmazlık) Modülü (K,kg/cm²)

Bulk Modülü, bir çepeçevre saran basınç altında sıkışmasının ölçüsüdür. Bu değer temel zemininin yük altında sıkışmaya karşı gösterdiği direncin derecesini göstermektedir. Dalga teorisinden elde edilen bulk modülü,

 $K = E/3(1 - 2\sigma) kg/cm^2$ formülü ile hesaplanır.

Tablo 26. Bulk modülü değerlerine göre zemin ya da kayaçların dayanımı (Keçeli, 2012)

Bulk Modülü (m, kg/cm²)	Sıkışma
<400	Çok Az
400-10000	Az
10000-40000	Orta
40000-100000	Yüksek
>1000000	Çok Yüksek

f)-Poisson Oranı (σ)

Poisson oranı formasyonun boyuna birim değişmesinin enine birim değişmesine oranı olarak tanımlanır ve birimlerin katılığını bir başka ifadeyle gözenekliliğini ifade eder. Vp/Vs hız oranı ile ilişkilidir. Bu oran değeri aynı zamanda zeminin sıkılığını ve zeminin sıvılaşma potansiyeli ile ilgili bilgi verir. Özellikle gevşek suya doygun siltli kum veya kumlu ortamlarda bu oran değerinin 3'ten büyük çıkması zemine gelecek yükün süresi ve büyüklüğüne bağlı olarak zeminde sıvılaşma potansiyelinin olduğunu ifade eder. Poisson değeri genel olarak gözeneksiz ortamlarda 0-0.25 arası, orta dereceli gözenekli ortamlarda 0.25-0.35 arası ve gözenekli ortamlarda ise 0.35-0.50 arasında değişmektedir. Poisson değeri birimsizdir.

 $\sigma = (V_P^2 - 2^*V_s^2)/(2^*V_P^2 - 2^*V_s^2)$ formülü ile hesaplanır.

Poisson Oram (σ)	Sıkılık	Vp/V_s
0.5	C1v1k- s1v1	00
0.4-0.49	Çok Gevşek	∞-2.49
0.3-0.39	Gevşek	2.49-1.71
0.20-0.29	Sıkı Katı	1.87-1.71
0.1-0.19	Katı	1.71-1.5
0-0.09	Sağlam Kaya	1.5-1.41

Tablo 27. Poisson sınıflaması ve hız oranı karşılaştırması (Keçeli, 2012)

g) Yoğunluk (d, gr/cm³)

Boyuna dalga hızına göre deneysel olarak (Gardner, 1974) tarafından verilen yoğunluk aşağıdaki formülden hesaplanır.

$d=0.31 V_p^{0.25} (gr/cm^3)$

Tablo 28. Zemin birimlerinin yoğunluk sınıflaması (Keçeli, 2012).

Yoğunluk: p (gr/cm³)	Tanımlama
<1.20	Çok düşük
1.20-1.40	Düşük
1.40-1.90	Orta
1.90-2.20	Yüksek
>2.20	Çok Yüksek

h) Zemin Hakim Titreşim Periyodu (To, sn) ve Zemin Büyütmesi (Ao)

Zeminin doğal olarak titreştiği, periyodudur. Periyot, doğal ya da yapay etkenlerden oluşmuş, periyodu 0.05-2 saniye arasında olan yer titreşimleridir. Belli bir alanda, belli bir periyodun tekrarlanma sayısı maksimum olmaktadır. Maksimum tekrarlı olan periyot, hakim periyot olarak tanımlanmaktadır.

T₀= 4H/V_{s30} (sn) (H=30 m) Ta=To*0,67 T_b=T₀*1.5

Zemin hakim titreşim periyotuna bağlı olarak; alt titreşim periyot $T_A=T_0*0,67$ ve üst titreşim periyotu $T_B=T_0*1,5$ hesaplanır. Zemin hakim titreşim periyodu yapının kendisinin periyoduna eşit veya çok yakın olmamalıdır. Bunların periyot değerlerinin birbirine yakın olması halinde yapıyı tehlikeye sokacak "Rezonans Hali" oluşabilir.

Temel Zemin Cinsi	$T_{\theta}(sn)$
Кауа	0,3
Çok Sıkı Kum-Çakıl	0,35
Çok Katı-Sert Kil	0,4
Sıkı Kum-Katı Kil	0,7
Orta Sıkı Kum-Katı Kil	1

Tablo 29. Zemin cinsine karşılık zemin hakim titreşim periyodu değerleri (Keçeli, 2012).

Zemin büyütmesi herhangi bir zemine gelen deprem yüklerinin zemin tarafından büyütülerek yüzeye aktarılmasını ifade eder. Bu parametre deprem dalgalarının genliklerinin anakaya içerisinde bir olduğu kabulüne göre değerlendirilir. Genel olarak jeoteknik çalışmalarda zemin büyütme değeri 30 metre derinliğe kadar ortalama kayma dalgası hızı kullanılarak hesaplanmaktadır. Tablo 31' de hesaplanan büyütme değerleri aşağıdaki eşitlikler kullanılarak hesaplanmıştır (Midorikawa, 1987).

$Ao = 68*V_{s30}^{-0.6}$	(<i>Vs30</i> < 1100 m/sn)
Ao = 1	(<i>V</i> _{s30} > 1100 m/sn)

 V_{s30} : 30 m derinlik için ortalama S dalgası hızı (V_{s30}) Ao: Maksimum yer hızı için göreceli büyüme faktörü

i) Zemin Taşıma Gücü (qe, kg/cm²)

Zeminin 1 cm² sinin taşıyabileceği nihai dinamik taşıma gücünü gösterir.

$q_e = d*V_s/(100*Fs) (kg/cm^2)$

Fs= Vp/Vs oranı olup güvenlik katsayısı olarak kullanılmıştır.

j) Zemin Yatak Katsayısı (Ks)

Herhangi bir zemine bir yük konduğunda zeminde meydana gelen elastik deformasyonu gösteren ve belirli bir gerilme altındaki zeminde oluşan oturma miktarı olarak tanımlanır. Yatak katsayısı aşağıdaki formülden hesaplanabilmektedir (Bowles, 1988).

$K_s = (40*q_a)/10 \text{ ton/m}^3$

Yatak katsayısı genel olarak kN/m^3 olarak hesaplanmakla birlikte, eğer q_a değeri kg/cm² olarak kullanılır ise yukarıdaki formülden hesaplanan değer 1000 ile çarpılarak ton/m³'e dönüştürülür. Buradaki $q_a = d*Vs/100$ olarak hesaplanır ve emniyetsiz taşıma gücü olarak ifade edilir.

k) Porozite (ϕ , %)

Gözeneklilik kayaçların tane büyüklüğüne, şekline, boyutuna ve taneler arası çimentolanma dercesine bağlı olarak değişim gösteren bir özelliktir. Genel olarak kayacın ilk oluşumu sırasında kazandığı düzenli gözeneklilik birincil gözeneklilik, ilk oluşumundan sonra geçirdiği olaylar (metamorfizma) sonucu oluşan gözeneklilikte ikincil gözeneklilik olarak tanımlanır. Gözeneklilik bir kayacın sismik hızı ile ilişkilidir. Bu ilişki sığ jeolojik ortamlar için Watkins vd. (1972) tarafından aşağıdaki şekilde ifade edilmiştir.

φ=-0,175*ln(Vp+1,56)

‰φ > 25	Yumuşak
$15 < \% \phi < 25$	Orta Sert
%φ < 15	Sert

1) Zemin Oturma Miktarı ($\Delta z, cm$)

Zemine herhangi bir yük konduğunda oluşan ani oturma veya elastik oturma miktarını gösterir. Genel olarak kum, çakıl ve dolgu malzemesi gibi kohezyonsuz zeminlerde meydana gelen oturma türüdür. Buna göre herhangi bir z derinliği için temel şekil faktörü dikkate alınmaksızın oturma miktarı aşağıdaki formül ile hesaplanır.

 $\Delta z = (qa/E)*z$

Bu ifadeye göre zeminde oturma miktarına zemine konan yük miktarı qa, zeminin sıkılığını yansıtan elastisite modülü E ve zemine konan yükün zemin içindeki gerilim dağılımının z derinliğine bağlı olduğu anlaşılmaktadır.

2.3. Sismik ve Elektrik Verilerden Elde Edilen Bulgular

Konum bilgileri Tablo 30' da verilmiş olan yerlerde her sondaj kuyusuna bir sismik ve bir elektrik profili gelecek şekilde veri toplanmıştır. Bu verilerden elde edilen sismik ve yer elektrik kesitleri oluşturulmuştur. Sismik tomografi kesitleri jeolojik birimlerin tabakalanma geometrisini göstermekte olup P dalgası hızları (Vp) bu kesitlerden yararlanılarak belirlenmiştir. Genel olarak tüm tomografi kesitlerinde yer altı geometrisi 3 tabakalı olarak tanımlanmıştır. S dalgası (Vs) hız-derinlik profillerinden tomografide belirlenen geometriye uygun olarak S dalgası hızları ortalama olarak belirlenmiştir. Elektrik özdirenç tomografi kesitlerinden yer altı jeolojik birimlerin ayrışma ve su içeriği bilgileri elde edilmiştir. Bununla birlikte her ERT kesiti üzerinde litolojik birimlerin yaklaşık olarak sınırları özdirenç değişim aralıkları dikkate alınarak işaretlenmiştir. Vp – Vs değerleri kullanılarak ortamlara ait tüm dinamik-elastik parametreleri hesaplanmış ve Tablo 31' de sunulmuştur. Metin içerisindeki sondaj kuyuları ifadesi ''SK'' kısaltması ile belirtilmiştir.

'n	Profil Profil Başlangıç Koordinatı		Bitiş Koordinatı				
Adı	Mevkii	Adı	Uzunluğu (m)	Y	X	Y	X
		Sis-1	57 metre	701164.062	4563120.971	701212.661	4563099.968
	köprü	Sis-2	57 metre	701210.029	4563097.973	701263.065	4563068.675
	/ezirl	Ert-1	115 metre	701244.655	4563080.413	701146.376	4563135.429
NUS		Ert-2	115 metre	701295.447	4563050.007	701194.285	4563108.696
SAM		Sis-1	57 metre	741138.389	4600851.592	741164.091	4600800.851
	fra	Sis-2	57 metre	741111.403	4600904.352	741138.028	4600852.852
	Bai	Ert-1	115 metre	741179.172	4600775.07	741125.115	4600882.593
		Ert-2	115 metre	741152.091	4600828.852	741097.82	4600933.214
	Işıktepe	Sis-1	57 metre	377761.293	4518225.197	377721.685	4518266.088
		Ert-1	69 metre	377720.016	4518267.781	377766.153	4518221.812
DU		Sis-1	57 metre	358730.63	4531749.065	358680.975	4531770.479
Ō	ence	Sis-2	57 metre	358767.412	4531629.256	358775.754	4531594.858
	Es		115 metre	358652.872	4531786.219	358748.024	4531729.007
		Ert-2	115 metre	358748.994	4531666.964	358778.671	4531553.658
7	Şebinkarahisar	Sis-1	57 metre	444809.059	4464508.33	444847.535	4464469.359
INS		Sis-2	57 metre	444625.146	4464692.92	444611.98	4464743.195
GİRE		Ert-1	115 metre	444888.071	4464432.376	444806.759	4464512.189
		Ert-2	115 metre	444610.108	4464765.623	444635.128	4464659.928

Tablo 30. SİS ve ERT ölçüm profillerine ait konum bilgileri

	Ağalık Madeni	Sis-1	57 metre	476107.342	4528255.888	476160.889	4528266.415
		Sis-2	57 metre	476215.353	4528296.563	476252.797	4528243.73
		Sis-3	57 metre	476067.714	4528240.096	476009.608	4528245.263
		Ert-1	69 metre	476151.28	4528266.176	476088.53	4528245.481
		Ert-2	69 metre	476210.055	4528297.696	476253.556	4528246.966
		Ert-3	115 metre	475981.422	4528254.818	476087.445	4528246.275
TRABZON	Çamburnu	Sis-1	57 metre	601441.813	4526025.67	601403.774	4525984.552
		Sis-2	57 metre	601264.916	4525740.359	601282.861	4525799.907
		Ert-1	115 metre	601383.216	4525960.37	601463.539	4526039.715
		Ert-2	115 metre	601309.526	4525833.972	601265.408	4525734.828
	Ovacık	Sis-1	57 metre	619407.244	4527312.255	619383.185	4527361.317
		Sis-2	57 metre	619376.052	4527268.579	619401.944	4527313.928
		Ert-1	69 metre	619376.038	4527370.24	619411.577	4527304.994
		Ert-2	69 metre	619405.635	4527320.533	619368.735	4527260.784
GÜMÜŞHANE	Kazantaş	Sis-1	57 metre	548993.834	4462964.435	548957.407	4462917.115
		Sis-2	57 metre	549077.54	4462823.986	549073.17	4462881.243
		Ert-1	115 metre	548931.929	4462879.756	549000.072	4462972.254
		Ert-2	92 metre	549068.124	4462925.825	549079.645	4462811.448
	Yenice	Sis-1	57 metre	565246.925	4464700.999	565293.954	4464674.554
		Sis-2	57 metre	565409.896	4464708.076	565369.51	4464669.488
		Ert-1	115 metre	565334.454	4464651.3	565235.232	4464707.681
		Ert-2	115 metre	565333.746	4464636.146	565417.64	4464711.395
BAYBURT	Merkez	Sis-1	57 metre	601675.640	4461134.239	601680.526	4461081.578
		Sis-2	57 metre	601688.859	4460993.824	601703.040	4460934.138
		Ert-1	115 metre	601677.772	4461063.917	601669.905	4461177.945
		Ert-2	115 metre	601707.403	4460903.339	601683.379	4461012.803
	Balkaynak	Sis-1	57 metre	576338.987	4466211.057	576374.910	4466252.465
		Ert-1	115 metre	576403.315	4466283.000	576324.724	4466199.979

ARTVİN	Merkez	Sis-1	57 metre	712879.179	4574657.056	712912.716	4574677.468
		Sis-2	57 metre	713019.114	4574712.577	713066.49	4574717.832
		Ert-1	115 metre	712965.532	4574708.497	712861.062	4574652.507
		Ert-2	115 metre	713121.888	4574731.966	713008.288	4574710.685

2.3.1. Samsun İli

Samsun ili sınırları içerisinde Vezirköprü ve Bafra olmak üzere 2 farklı ilçede ön çalışmalar (harita çalışmaları) ile belirlenen alanlar üzerinde sismik ve elektrik özdirenç ölçümleri gerçekleştirilmiştir. Yapılan ölçümlere ait profil ve koordinat bilgileri Tablo 30' da ve hesaplanan tüm dinamik-elastik parametreler ise Tablo 31' de verilmiştir.

Vezirköprü SİS ve ERT profilleri

Vezirköprü Elektrik Tomografi (ERT) - 1

Şekil 49. Vezirköprü Profil 1 (SK-1) için SİS ve ERT kesitleri. P dalgası tomografik hız kesiti (üstte), elektrik özdirenç tomografi kesiti (orta) ve S dalgası hız-derinlik profili (altta)

Vezirköprü Elektrik Tomografi (ERT) - 2

Şekil 50. Vezirköprü Profil 2 (SK-2) için SİS ve ERT kesitleri. P dalgası tomografik hız kesiti (üstte), elektrik özdirenç tomografi kesiti (orta) ve S dalgası hız-derinlik profili (altta)

Bafra ilçesi SİS ve ERT profilleri

Şekil 51. Bafra Profil 1 (SK-1) için SİS ve ERT kesitleri. P dalgası tomografik hız kesiti (üstte), elektrik özdirenç tomografi kesiti (orta) ve S dalgası hız-derinlik profili (altta)

Bafra Elektrik Tomografi (ERT) - 2

Şekil 52. Bafra Profil 2 (SK-2) için SİS ve ERT kesitleri. P dalgası tomografik hız kesiti (üstte), elektrik özdirenç tomografi kesiti (orta) ve S dalgası hız-derinlik profili (altta)

2.3.2. Ordu İli

Ordu ili sınırları içerisinde Işıktepe ve Esence olmak üzere 2 farklı ilçede ön çalışmalar (harita çalışmaları) ile belirlenen alanlar üzerinde sismik ve elektrik özdirenç ölçümleri gerçekleştirilmiştir. Yapılan ölçümlere ait profil ve koordinat bilgileri Tablo 30' da ve hesaplanan tüm dinamik-elastik parametreler ise Tablo 31' de verilmiştir.

Şekil 53. Işıktepe Profil 1 (SK-1) için SİS ve ERT kesitleri. P dalgası tomografik hız kesiti (üstte), elektrik özdirenç tomografi kesiti (orta) ve S dalgası hız-derinlik profili (altta)

Esence ilçesi SİS ve ERT profilleri

KB

68

68

654

Şekil 54. Esence Profil 1 (SK-1) için SİS ve ERT kesitleri. P dalgası tomografik hız kesiti (üstte), elektrik özdirenç tomografi kesiti (orta) ve S dalgası hız-derinlik profili (altta)

GD

Şekil 55. Esence Profil 2 (SK-2) için SİS ve ERT kesitleri. P dalgası tomografik hız kesiti (üstte), elektrik özdirenç tomografi kesiti (orta) ve S dalgası hız-derinlik profili (altta)

2.3.3. Giresun İli

Giresun ili sınırları içerisinde Şebinkarahisar ve Ağalık Madeni olmak üzere 2 farklı ilçede ön çalışmalar (harita çalışmaları) ile belirlenen alanlar üzerinde sismik ve elektrik özdirenç

ölçümleri gerçekleştirilmiştir. Yapılan ölçümlere ait profil ve koordinat bilgileri Tablo 30' da ve hesaplanan tüm dinamik-elastik parametreler ise Tablo 31' de verilmiştir.

Şebinkarahisar ilçesi SİS ve ERT profilleri

Şekil 56. Şebinkarahisar Profil 1 (SK-1) için SİS ve ERT kesitleri. P dalgası tomografik hız kesiti (üstte), elektrik özdirenç tomografi kesiti (orta) ve S dalgası hız-derinlik profili (altta)

Şekil 57. Şebinkarahisar Profil 2 (SK-2) için SİS ve ERT kesitleri. P dalgası tomografik hız kesiti (üstte), elektrik özdirenç tomografi kesiti (orta) ve S dalgası hız-derinlik profili (altta)

Ağalık Madeni mevkii SİS ve ERT profilleri

Ağalık Madeni Elektrik Tomografi (ERT) - 1

Şekil 58. Ağalık Madeni Profil 1 (SK-1) için SİS ve ERT kesitleri. P dalgası tomografik hız kesiti (üstte), elektrik özdirenç tomografi kesiti (orta) ve S dalgası hız-derinlik profili (altta)

Şekil 59. Ağalık Madeni Profil 2 (SK-2) için SİS ve ERT kesitleri. P dalgası tomografik hız kesiti (üstte), elektrik özdirenç tomografi kesiti (orta) ve S dalgası hız-derinlik profili (altta)

Ağalık Madeni Elektrik Tomografi (ERT) - 3

Şekil 60. Ağalık Madeni Profil 3 (SK-3) için SİS ve ERT kesitleri. P dalgası tomografik hız kesiti (üstte), elektrik özdirenç tomografi kesiti (orta) ve S dalgası hız-derinlik profili (altta)

2.3.4. Trabzon İli

Trabzon ili sınırları içerisinde Çamburnu ve Ovacık olmak üzere 2 farklı ilçede ön çalışmalar (harita çalışmaları) ile belirlenen alanlar üzerinde sismik ve elektrik özdirenç ölçümleri gerçekleştirilmiştir. Yapılan ölçümlere ait profil ve koordinat bilgileri Tablo 30' da ve hesaplanan tüm dinamik-elastik parametreler ise Tablo 31' de verilmiştir.

Çamburnu mevkii SİS ve ERT profilleri

Çamburnu Elektrik Tomografi (ERT) - 1

Şekil 61. Çamburnu Profil 1 (SK-1) için SİS ve ERT kesitleri. P dalgası tomografik hız kesiti (üstte), elektrik özdirenç tomografi kesiti (orta) ve S dalgası hız-derinlik profili (altta)

Çamburnu Elektrik Tomografi (ERT) - 2

Şekil 62. Çamburnu Profil 2 (SK-2) için SİS ve ERT kesitleri. P dalgası tomografik hız kesiti (üstte), elektrik özdirenç tomografi kesiti (orta) ve S dalgası hız-derinlik profili (altta)

Ovacık mevkii SİS ve ERT profilleri

Ovacık Elektrik Tomografi (ERT) - 1

Şekil 63. Ovacık Profil 1 (SK-1) için SİS ve ERT kesitleri. P dalgası tomografik hız kesiti (üstte), elektrik özdirenç tomografi kesiti (orta) ve S dalgası hız-derinlik profili (altta)

Ovacık Elektrik Tomografi (ERT) - 2

Şekil 64. Ovacık Profil 2 (SK-2) için SİS ve ERT kesitleri. P dalgası tomografik hız kesiti (üstte), elektrik özdirenç tomografi kesiti (orta) ve S dalgası hız-derinlik profili (altta)

2.3.5. Gümüşhane İli

Gümüşhane ili sınırları içerisinde Kazantaş ve Yenice olmak üzere 2 farklı ilçede ön çalışmalar (harita çalışmaları) ile belirlenen alanlar üzerinde sismik ve elektrik özdirenç

ölçümleri gerçekleştirilmiştir. Yapılan ölçümlere ait profil ve koordinat bilgileri Tablo 30' da ve hesaplanan tüm dinamik-elastik parametreler ise Tablo 31' de verilmiştir.

Kazantaş mevkii SİS ve ERT profilleri

Şekil 65. Kazantaş Profil 1 (SK-1) için SİS ve ERT kesitleri. P dalgası tomografik hız kesiti (üstte), elektrik özdirenç tomografi kesiti (orta) ve S dalgası hız-derinlik profili (altta)

Kazantaş Elektrik Tomografi (ERT) - 2 ayisi= Uzaklık (m) 48.0 Yükseklik (m) 18oşluk vey Kütlesi S Dalga Hızı (m/sn) 4 0 1 10 Derinlik (m) 12 14 16 18 20 22 24 28 28

Şekil 66. Kazantaş Profil 2 (SK-2) için SİS ve ERT kesitleri. P dalgası tomografik hız kesiti (üstte), elektrik özdirenç tomografi kesiti (orta) ve S dalgası hız-derinlik profili (altta)

Yenice mevkii SİS ve ERT profilleri

Yenice Elektrik Tomografi (ERT) - 1

Şekil 67. Yenice Profil 1 (SK-1) için SİS ve ERT kesitleri. P dalgası tomografik hız kesiti (üstte), elektrik özdirenç tomografi kesiti (orta) ve S dalgası hız-derinlik profili (altta)

Yenice Elektrik Tomografi (ERT) - 2

Şekil 68. Yenice Profil 2 (SK-2) için SİS ve ERT kesitleri. P dalgası tomografik hız kesiti (üstte), elektrik özdirenç tomografi kesiti (orta) ve S dalgası hız-derinlik profili (altta)

2.3.6. Bayburt İli

Bayburt ili sınırları içerisinde Merkez ve Balkaynak olmak üzere 2 farklı ilçede ön çalışmalar (harita çalışmaları) ile belirlenen alanlar üzerinde sismik ve elektrik özdirenç ölçümleri gerçekleştirilmiştir. Yapılan ölçümlere ait profil ve koordinat bilgileri Tablo 30' da ve hesaplanan tüm dinamik-elastik parametreler ise Tablo 31' de verilmiştir.

Merkez ilçesi SİS ve ERT profilleri

Şekil 69. Bayburt Profil 1 (SK-1) için SİS ve ERT kesitleri. P dalgası tomografik hız kesiti (üstte), elektrik özdirenç tomografi kesiti (orta) ve S dalgası hız-derinlik profili (altta)

Bayburt Elektrik Tomografi (ERT) - 2

Şekil 70. Bayburt Profil 2 (SK-2) için SİS ve ERT kesitleri. P dalgası tomografik hız kesiti (üstte), elektrik özdirenç tomografi kesiti (orta) ve S dalgası hız-derinlik profili (altta)

Balkaynak mevkii SİS ve ERT profilleri

(ükseklik (m)

Şekil 71. Balkaynak Profil 1 (SK-1) için SİS ve ERT kesitleri. P dalgası tomografik hız kesiti (üstte), elektrik özdirenç tomografi kesiti (orta) ve S dalgası hız-derinlik profili (altta)

2.3.7. Artvin İli

Artvin ili sınırları içerisinde Murgul olmak üzere 1 ilçede ön çalışmalar (harita çalışmaları) ile belirlenen alanlar üzerinde sismik ve elektrik özdirenç ölçümleri gerçekleştirilmiştir. Yapılan ölçümlere ait profil ve koordinat bilgileri Tablo 30' da ve hesaplanan tüm dinamik-elastik parametreler ise Tablo 31' de verilmiştir.

Murgul ilçesi SİS ve ERT profilleri

Şekil 72. Murgul Profil 1 (SK-1) için SİS ve ERT kesitleri. P dalgası tomografik hız kesiti (üstte), elektrik özdirenç tomografi kesiti (orta) ve S dalgası hız-derinlik profili (altta)

Murgul Elektrik Tomografi (ERT) - 2

Şekil 73. Murgul Profil 2 (SK-2) için SİS ve ERT kesitleri. P dalgası tomografik hız kesiti (üstte), elektrik özdirenç tomografi kesiti (orta) ve S dalgası hız-derinlik profili (altta)

'n	İlaa	Hat	The	h	Vp	Vs	Vn/Va	d	μ	E	K	_	%	Ks	Qe	V _{s30}	То	4.0	∆z
11	nçe	паі	IUK	(m)	(m/sn)	(m/sn)	<i>vp/vs</i>	(gr/cm^3)	(kg/cm^2)	(kg/cm^2)	(kg/cm^2)	σ	Porozite	(t/m^3)	(kg/cm^2)	(m/sn)	(sn)	Aθ	(<i>cm</i>)
	prü		1	4,50	800	400	2,0	1,65	2638	7034	7034	0,33	0,39	23002	3,30				1,4
		Sis-1	2	4,50	1500	450	3,3	1,93	3907	11334	38199	0,45	0,28	22237	2,60	551	0,21	1,54	1,1
	köj		3		2300	620	3,7	2,15	8252	24110	102563	0,46	0,21	42506	3,59				0,8
	Vezir	Sis-2	1	4,50	800	250	3,2	1,65	1030	2980	9178	0,45	0,39	6090	1,29			,31 1,93	2,1
Z			2	4,50	1600	220	7,3	1,96	949	2829	48926	0,49	0,27	2544	0,59	377	0,31		2,3
ISI			3		2500	450	5,6	2,19	4439	13168	131083	0,48	0,19	15501	1,78				1,1
MM		Sis-1	1	3,00	450	180	2,5	1,43	463	1300	2274	0,41	0,49	3400	1,03		0,47		3,0
$\mathbf{S}_{\mathbf{I}}$	_		2	9,00	700	230	3,0	1,59	844	2428	6689	0,44	0,41	5218	1,21	251		2,47	2,3
	fra		3		950	280	3,4	1,72	1349	3920	13733	0,45	0,36	7555	1,42				1,8
	Ba		1	4,00	450	180	2,5	1,43	463	1300	2274	0,41	0,49	3400	1,03				3,0
		Sis-2	2	8,50	720	220	3,3	1,61	777	2252	7298	0,45	0,41	4499	1,08	223	0,53	2,65	2,4
			3		1000	240	4,2	1,74	1004	2951	16094	0,47	0,35	4632	1,00				2,1
	Işık tepe		1	1,00	800	420	1,9	1,65	2908	7618	6674	0,31	0,39	26157	3,64	1357	0,08		1,4
		Sis-1	2	1,50	1800	620	2,9	2,02	7762	22241	55073	0,43	0,25	50101	4,31			1	0,8
			3		3000	1000	3,0	2,29	22943	65960	175893	0,44	0,16	143793	7,65				0,5
RDU	nce	Sis-1	1	1,50	600	330	1,8	1,53	1671	4288	3296	0,28	0,44	15423	2,78		0,20	1,50	1,8
			2	5,50	1800	550	3,3	2,02	6108	17695	57278	0,45	0,25	35361	3,39	572			0,9
Õ			3		3000	750	4,0	2,29	12905	37855	189276	0,47	0,16	61893	4,30				0,7
	Ese	Sis-2	1	2,00	800	330	2,4	1,65	1795	5018	8158	0,40	0,39	13537	2,24		0,20		1,6
	H		2	1,50	1800	550	3,3	2,02	6108	17695	57278	0,45	0,25	35361	3,39	572		1,50	0,9
			3		3000	750	4,0	2,29	12905	37855	189276	0,47	0,16	61893	4,30				0,7
	r		1	3,00	800	295	2,7	1,65	1435	4078	8638	0,42	0,39	<i>9836</i>	1,79				1,8
	iisaı	Sis-1	2	4,00	1700	310	5,5	1,99	1913	5673	54976	0,48	0,26	6766	1,13	396	0,30	1,87	1,6
	ırah		3		2600	550	4,7	2,21	6696	19775	140713	0,48	0,18	27358	2,58				0,9
	nka		1	2,00	1000	550	1,8	1,74	5273	13533	10401	0,28	0,35	48678	5,27				1,1
7	Jebi	Sis-2	2	8,00	1800	750	2,4	2,02	11358	31688	50278	0,40	0,25	86350	6,31	857	0,14	1,18	0,7
5	•r		3		3000	950	3,2	2,29	20706	59809	178876	0,44	0,16	123865	6,90				0,5
ES			1	5,00	700	150	4,7	1,59	359	1059	7335	0,48	0,41	1484	0,51				3,4
iiR	eni	Sis-1	2	3,00	1300	270	4,8	1,86	1357	4010	29649	0,48	0,31	5447	1,04	274	0,40	1,34	1,9
9	ad		3		1900	330	5,8	2,05	2229	6617	70913	0,48	0,24	7516	1,17				1,5
	M		1	3,50	750	150	5,0	1,62	365	1080	8639	0,48	0,40	1412	0,49				3,4
	alık	Sis-2	2	9,00	1700	270	6,3	1,99	1451	4316	55592	0,49	0,26	4483	0,85	300	0,27	2,20	1,9
	∆ğ'		3		2800	350	8,0	2,26	2762	8243	17311	0,49	0,17	6739	0,99				1,4
	V		1	4,00	850	240	3,5	1,67	964	2809	10808	0,46	0,38	5187	1,13	435	0,30	1,77	2,1

Tablo 31. Tüm sismik profillere ait hesaplanan Dinamik-Elastik parametreler

		Sis-3	2	5,00	1700	380	4,5	1,99	2874	8472	53695	0,47	0,26	12385	1,69]			1,3		
			3		2500	580	4,3	2,19	7374	21703	127170	0,47	0,19	32929	2,95				0,9		
			1	6,50	1000	300	3,3	1,74	1569	4552	15341	0,45	0,35	8930	1,57				1,7		
	nu.	Sis-1	2	5,00	1800	500	3,6	2,02	5048	14722	58691	0,46	0,25	26745	2,80	1016	0,24	1,66	1,0		
	Jur		3		2900	700	4,1	2,27	11147	32751	176456	0,47	0,16	51702	3,84				0,7		
	E I	Sis-2	Sis-2	m	1	4,00	700	450	1,6	1,59	3229	7413	3508	0,15	0,41	31164	4,61				1,5
NO	Ça			2	5,00	1800	700	2,6	2,02	9894	27919	52230	0,41	0,25	71008	5,50	699	0,11	1,06	0,8	
3Z(3		3000	1100	2,7	2,29	27761	78970	169469	0,42	0,16	189369	9,25				0,5		
I			1	6,00	800	270	3,0	1,65	1202	3451	8949	0,44	0,39	7618	1,50				1,9		
TR	Y	Sis-1	2	2,00	1700	350	4,9	1,99	2438	7207	54276	0,48	0,26	9704	1,43	483	0,31	1,91	1,4		
	acıl		3		2800	600	4,7	2,26	8118	23964	165970	0,48	0,17	33583	2,90				0,8		
	NC:		1	8,50	600	300	2,0	1,53	1381	3682	3682	0,33	0,44	12041	2,30				1,9		
	•	Sis-2	2	6,00	1100	500	2,2	1,79	4463	12227	15651	0,37	0,33	36349	4,06	484	0,24	1,66	1,1		
			3		1700	700	2,4	1,99	9754	27270	44522	0,40	0,26	73436	5,74				0,8		
			1	2,50	700	350	2,0	1,59	1953	5209	5209	0,33	0,41	17033	2,79				1,6		
	aş	Sis-1	2	2,50	1600	450	3,6	1,96	3970	11570	44898	0,46	0,27	21281	2,48	699	0,17	1,33	1,1		
	ant		3		2200	800	2,8	2,12	13588	38693	84640	0,42	0,21	92018	6,18				0,7		
E	az:	Sis-2	1	7,50	900	400	2,3	1,70	2717	7481	10131	0,38	0,37	21746	3,02		0,15	1,26	1,7		
AN	K		2	5,50	1800	600	3,0	2,02	7269	20899	55730	0,44	0,25	45559	4,04	761			1,0		
H			3		2800	900	3,1	2,26	18266	52693	152440	0,44	0,17	110767	6,52				0,6		
ÜŞ			1	11,00	800	300	2,7	1,65	1484	4209	8573	0,42	0,39	10322	1,85				1,8		
ÜN	•	Sis-1	2	5,00	1450	450	3,2	1,91	3874	11208	35055	0,45	0,29	22749	2,67	422	0,28	1,80	1,2		
Ð	nice		3		2300	640	3,6	2,15	8793	25642	101842	0,46	0,21	46664	3,82				0,8		
	Yeı		1	11,00	800	300	2,7	1,65	1484	4209	8573	0,42	0,39	10322	1,85				1,8		
		Sis-2	2	6,00	1600	550	2,9	1,96	5931	16998	42284	0,43	0,27	38213	3,71	417	0,28	1,82	1,0		
			3		2500	700	3,6	2,19	10741	31309	122681	0,46	0,19	57333	4,30				0,7		
			1	5,00	600	350	1,7	1,53	1879	4669	3017	0,24	0,44	17812	3,13				1,7		
	2	Sis-1	2	5,00	1600	550	2,9	1,96	5931	16998	42284	0,43	0,27	38213	3,71	614	0,19	1,44	1,0		
	ke		3		2300	800	2,9	2,15	13740	39328	95247	0,43	0,21	89462	5,97				0,7		
L	Ier		1	5,00	850	500	1,7	1,67	4185	10340	6514	0,24	0,38	39778	4,92				1,2		
UR	N	Sis-2	2	4,00	1650	650	2,5	1,98	8348	23509	42660	0,41	0,26	60568	5,06	805	0,14	1,22	0,8		
YB			3		2800	1000	2,8	2,26	22550	64354	146727	0,43	0,17	150312	8,05				0,5		
3A	k		1	2,50	600	175	3,4	1,53	470	1366	4897	0,45	0,44	2605	0,78				2,9		
I	ynal		2	4,50	1500	280	5,4	1,93	1513	4483	41391	0,48	0,28	5473	1,01				1,8		
	Balka	Sis-1	3		2000	500	4,0	2,07	5183	15203	76013	0,47	0,23	24856	2,59	371	0,32	1,95	1,0		

		C'. 1	1	3,50	1000	500	2,0	1,74	4358	11622	11622	0,33	0,35	38003	4,36	952	0.14	1 10	1,1
ļ,	luį	515-1	2	4,00	1900	800	2,4	2,05	13099	36474	56420	0,39	0,24	100437	6,89	832	0,14	1,18	0,7
Ĺ	urg		3		3000	1100	2,7	2,29	27761	78970	169469	0,42	0,16	189369	9,25				0,5
AR	Μ		1	5,00	1000	450	2,2	1,74	3530	9694	12726	0,37	0,35	28529	3,53				1,2
		Sis-2	2	5,50	1900	750	2,5	2,05	11513	32413	58535	0,41	0,24	83676	6,06	844	0,14	1,19	0,7
			3		2800	1000	2,8	2,26	22550	64354	146727	0,43	0,17	150312	8,05				0,5

3. SONUÇLAR ve ÖNERİLER

Bu çalışma kapsamında Samsun, Ordu, Giresun, Trabzon, Gümüşhane, Bayburt ve Artvin illeri için önerilen düzenli depolama alanları Jeofizik veriler açısından (Depremsellik, Sismik ve Elektrik) uygunluk değerlendirmesi ve önerileri yapılmıştır.

3.1. Depremsellik Analizlerinin Sonuçları

Katı atık depolama alanı belirlemek için Türkiye'nin kuzeydoğusunda yer alan ve KAFZ'a yakın olan 7 ili (Samsun, Ordu, Giresun, Trabzon, Artvin, Gümüşhane, Bayburt) içeren bölgede oluşmuş tarihsel ve aletsel deprem verileri ulusal ve uluslararası veri merkezlerinden alınmıştır. Farklı magnitüd ölçeğindeki veriler yüzey dalgası magnitüdüne dönüştürülerek homojen hale getirilmiş, tarihsel depremlerdeki şiddet ölçeği magnitüd ölçeğine dönüştürülmüştür. Depremlerin tamamlılık analizi yapılarak tamamlılık yılı aletsel dönem başlangıcı (1900 yılı) seçilmiş, magnitüdün alt sınırı olarak M_S \geq 4.0 alınmıştır.

Depremsellik çalışması yapılan her il (Samsun, Ordu, Giresun, Trabzon, Artvin, Gümüşhane, Bayburt) için magnitüd aralığı için 0.1 sınıf aralığı kullanılarak birikimli (toplam) frekanslar belirlenerek, En Küçük Kareler yaklaşımı ile Gutenberg-Richter (1954) magnitüd-frekans (yıllık oluşum) ilişkileri hesaplanmıştır (Tablo 22). Bu ilişkilerden belirlenen b-değerleri sismik aktivitenin bir göstergesi olarak bu bölgeler için depremsellik çalışmasında kullanılan önemli parametrelerden birisidir. Zira b-değerlerindeki azalma bu bölgelerde bir enerji birikimini göstermekte ve büyük bir deprem oluşmasının beklenebileceğini ifade etmektedir. Buna göre en küçük b-değerleri sırasıyla Ordu (b=0.47), Gümüşhane (b=0.48), Trabzon (b=0.48), en büyük b-değerleri ise sırasıyla Artvin (b=0.87), Bayburt (b=0.68), Samsun (b=0.65), Giresun (b=0.57) illeri için belirlenmiştir.

1 abit 22. 11	Tubio 22. mere un ymik deprem orașum mșknen, 14, kumulatit deprem saynan.								
İ1	Magnitüd-sıklık İlişkisi	İ1	Magnitüd-sıklık İlişkisi						
Samsun	Log(Ni) = 4.25 - 0.65Ms	Artvin	Log(Ni) = 5.06 - 0.87Ms						
Ordu	Log(Ni) = 3.14 - 0.47Ms	Gümüşhane	Log(Ni) = 3.50 - 0.48Ms						
Giresun	Log(Ni) = 3.83 - 0.57Ms	Bayburt	Log(Ni) = 4.33 - 0.68Ms						
Trabzon	Log(Ni) = 2.40 - 0.48Ms								

Tablo 22. İllere ait yıllık deprem oluşum ilişkileri, Ni; kümülatif deprem sayıları

Her bir il için aletsel dönemde oluşmuş depremlerin Poisson dağılımına uyduğu varsayımı ile inceleme alanlarına ait deprem tehlikesi hesaplamaları yapılmıştır. Her ilde

meydana gelen en büyük magnitüdlü depremler dikkate alınarak çeşitli magnitüdlerdeki depremlerin gelecek 100 yıl içerisinde her 10'ar yıllık periyodlarda depremlerin aşılma olasılıkları R(M) ve tekrarlanma periyodları (Q) hesaplanmıştır. Buna göre M_S \geq 4.0 olan depremlerin 10 yıl içerisinde olma olasılığı en yüksek iller sırasıyla Gümüşhane (%96), Samsun (%94), Giresun (%90), Bayburt (%90), Artvin (%81) ve Ordu (%75) olarak belirlenmiştir. En düşük olasılık (%22) Trabzon için hesaplanmıştır.

100 yıl içerisinde $M_S \ge 7.0$ olan büyük depremler için tehlikenin en büyük olduğu değerler sırasıyla Gümüşhane (%69), Ordu (%41), en küçük değerler ise Giresun (%35), Samsun (%29) ve Bayburt (%19) illeri için belirlenmiştir. Artvin ilinde hesaplamaya katılan en büyük magnitüd değeri $M_S \ge 6.5$ için 100 yıl içerisinde belirlenen tehlike %10 değerinde, Trabzon ilinde hesaplamaya katılan en büyük magnitüd değeri $M_S \ge 6.5$ için 100 yıl içerisinde belirlenen tehlike %10 değerinde, Delirlenen tehlike %37 olarak belirlenmiştir.

Aynı dönem için kuvvetli bir depremin ($M_S \ge 6.0$) tekrarlanma aralığı Gümüşhane ili için 29 yıl, Giresun ili için 62 yıl, Ordu ili için 63 yıl, Samsun ili için 68 yıl, Bayburt ili için 101 yıl, Artvin ili için 336 yıl olarak belirlenmiştir. Orta büyüklükteki ($M_S \ge 5.0$) bir depremin tekrarlanma aralığı ise Trabzon ili için 124 yıl olarak hesaplanmıştır.

Deterministik deprem tehlikesinin belirlenmesi kapsamında doğu Karadeniz bölgesini etkileyen en önemli deprem kuşağı olan KAFZ'ın doğu uzantısında oluşabilecek M_S =7.9 büyüklüğünde bir deprem (Erzincan örneği) ile KAFZ'ın batı uzantısında oluşabilecek M_S =7.0 büyüklüğünde bir depremin (Tokat örneği) inceleme alanında oluşabilecek zeminbağımsız eşşiddet ve eş-ivme dağılım haritaları oluşturulmuştur. Buna göre KAFZ'ın doğu uzantısı üzerinde meydana gelen M_S =7.9 büyüklüğünde bir deprem (Erzincan örneği) sonucu oluşabilecek zemin bağımsız şiddet değeri Bayburt ve Gümüşhane için VIII, Trabzon için VII, Ordu ve Giresun için VI, Samsun ve Artvin için V olarak hesaplanmıştır. Aynı deprem için hesaplanan ivme değerleri Trabzon, Gümüşhane ve Bayburt illerinde 215-556gal (~0.4g) aralığında, Giresun ve Ordu illerinde 158-215gal (~0.2g) aralığında, Artvin ilinde 150-158gal (~0.15g) aralığında ve Samsun ilinde 90-150gal (~0.1g) aralığında bulunmuştur.

KAFZ'ın batı uzantısı üzerinde oluşan M_s =7.0 büyüklüğünde bir deprem (Tokat örneği) etkisinde zeminin bağımsız şiddet değeri Samsun için VII, Ordu için VI, Giresun için V, Trabzon, Gümüşhane, Bayburt ve Artvin için IV olarak hesaplanmıştır. Bu depremin zeminde oluşturacağı ivme değerleri Samsun ili için 191-396gal (~0.3g) aralığında, Ordu ve Giresun illeri için 66-103gal (~0.09g) aralığında, Trabzon, Gümüşhane ve Bayburt illeri için 43-50gal (~0.05g) aralığında, Rize ve Artvin illeri için 28-43gal (~0.04g) aralığında hesaplanmıştır.

3.2. Sismik ve Elektrik Analizlerin Sonuçları

Sismik verilerden elde edilen dinamik-elastik ve jeoteknik parametreleri (Tablo 31) atık depolama alanları için yeraltı geometrisi, jeolojik malzemelerin sıkılığı-katılığı, yumuşaklığı-gevşekliği açısından, elektrik özdirenç verilerinden ise yeraltı su içeriği, litolojik değişimler, killi malzeme içeriği ve kayaçların ayrışma dereceleri açısından değerlendirilmiştir. Tüm bu değerlendirmeler ve ilgili alanların Jeofizik veriler ışığında katı atık depolama sahası için uygunlukları aşağıda açıklanmıştır. Bununla birlikte buradaki açıklamalar Tablo 31'de elde edilen tüm parametrelerin genel ve bütüncül yorumunu içermektedir. Her bir profilde elde edilen yeraltı jeolojik yapısına ait parametrelerin detay değerlendirmesi için Tablo 31'deki sonuçlar metin içerisinde verilen referans tablolardaki (Tablo 22'den Tablo 29'a kadar) değerler ile karşılaştırılmalıdır.

SAMSUN İL	,İ						
Vezirköprü	Bafra						
04.5 metre arası çok sıkı olmayan nemli ve	Sismik parametreler açısından						
ayrışmış birimleri, 4.5-9 metreler arası suya	oldukça zayıf zemin özelliği						
doygun jeolojik birimler (sondaj sonuçlarına göre	göstermektedir. Elektrik özdirenç						
killi birim), 9 metreden sonra ise sıkı birimleri	sonuçları açısından ise ortamın suya						
gözlenmiştir. Birinci profil verilerine göre	doygun olduğu anlaşılmaktadır.						
ortamda bir süreksizlik zonu ya da yanal yönde	Sismik verilerden alan içerisinde						
litolojik değişim olduğu görülmüştür. Sismik	düşey atılımlı örtülü bir fay olduğu						
parametreler açısından ortam depolama alanı	düşünülmektedir. Bu sonuçlara göre						
olarak uygun görülüyor olsa da, elektrik verilerine	bir çöp depolama alanı için çok						
göre yeraltı suyunun varlığı şüphesiyle özel	elverişli bir alan olduğu						
jeoteknik önlem gerekli olduğu düşünülmektedir.	düşünülmemektedir.						
Her iki alanın zemin özellikleri karşılaştırıldığında Vezirköprü'nün katı atık depolama							
alanı açısından daha uygun olduğu düşünülmektedir.							

ORDU İLİ	
Esence	Işıktepe
Esence sahası için hesaplanan sismik parametreler	Sismik parametre göre ortam
0-1.5 metreler arası katık-sıkı zemin ve 1.5- 7	yüzeyden itibaren oldukça sağlam bir
metreler arası kırık çatlaklı kaya birimleri	zemine sahiptir. Özellikle 2.5
göstermektedir. 7 metreden sonra ise tamamen	metreden sonra masif bir kaya yapısı
sağlam kaya birimleri mevcuttur. Elektrik verilere	(sondaj verilerine göre ortam
göre ortamda yeraltı suyu açısından sorunlu bir	bazaltlardan oluşmaktadır)
durum görülmemekle birlikte yüzey sularının	mevcuttur. Elektrik verilerine göre
kırık-çatlak zonları boyunca yeraltına sızdığı	yüzeye yakın ve yerel su belirtileri
düşülmektedir. Yüzey sularının drenajı için	görülmekle birlikte bunların
gerekli önlemlerin alınması gerekmektedir.	mevsimsel olduğu düşünülmektedir.
Esence sahasının ERT 2 kesiti üzerinde (Şekil 55)	Dolayısıyla ortamda yeraltı suyu
65-85 metreler arasında yaklaşık 6-7 metre	bulunmamaktadır.
derinliklerinde iki adet muhtemel boşluk tipi yapı	
var olduğu düşünülmektedir. Sondaj verilerine	
göre ortamın kireçtaşı olması, bu tip boşluk	
yapılarının olma ihtimalini güçlendirmektedir. Bu	
nedenle gerekli önlemler alındıktan sonra katı atık	
depolama sahası için kullanılabilir.	
Her iki alanda katı atık depolama alanı açısından	uygun olmakla birlikte Işıktepe alanı

Jeofizik verilere göre daha sorunsuz bir yapıya sahiptir.

GİRESUN İI	LÍ
Şebinkarahisar	Ağalık Madeni
Sismik parametrelere göre yüzeyden itibaren 7	Hem sismik hem de elektrik
metrelere kadar orta sıkı karakterli bir zemin	ölçümlerin alındığı 1. ve 2. profillerin
yapısı görülmekle birlikte 7 metreden sonra çok	yerleri oldukça zayıf ve su içeriği
sağlam kaya yapısı görülmektedir. Ancak hem	açısından doygun bir yapı
SİS-1 profilindeki S dalga hızlarının düşük olması	göstermektedir. Temel özelliği
hem de ERT-1 kesitlerinde görülen düşük	gösteren ortalama 8-10 metrelerden
özdirençliliğin (<25 Ohm-m) nedeninin su içeriği	başlayan birim topografik olarak aşırı
yüksek killi-siltli birimlerden kaynaklandığı	eğimlidir. Elektrik verileri temel
düşünülmektedir. SİS-2 profilinin olduğu yerde	özelliği gösteren bu yapının kaya
profilin 25-30. metrelerinde bir süreksizlik zonu	karakteri taşımadığını
mevcut olup bu durum elektrik kesitinde de	göstermektedir. Bu nedenle sismik
gözlenmektedir.	hızların bu birim için yüksek çıkmış
	olması birimin kayadan ziyade sıkı
	bir yapıda olduğunu göstermektedir.
	Buna karşılık 3. profilin sismik ve
	elektrik özdirenç verilerinden elde
	edilen sonuçlar ortamın daha sağlam
	bir zemine sahip olduğunu
	göstermektedir.
Sebinkarahisar katı atık depolama alanı acısınd	an uvgundur. Ancak Ağalık madeni
sahasında her ne kadar 3.profilin olduğu kısım	uygun görünüyorsa da alanın tamamı
birlikte değerlendirildiğinde katı atık depo	lama alanı için uygun olmadığı

düşünülmektedir.

TRABZ	ON İLİ						
Çamburnu	Ovacık						
Sismik parametrelere göre ortamda ortalama	Sismik parametrelere göre ortam genel						
olarak ilk 4 metreye kadar sıkı bir zemin	olarak yüzeyden ortalama 10-11 metrelere						
olup, onun altında kaya birimler yer	kadar (anakayaya kadar) orta sıkı zemin						
almaktadır. Ancak bu kaya birimler	veya ileri derecede ayrışmış kaya						
ortalama 9 metreye kadar kırık çatlaklı bir	yapısındadır. Bununla birlikte anakaya						
karakterdir. 9 metreden sonra sağlam bir	topografyası oldukça değişken ve 7-8						
yapı göstermektedir. Bununla birlikte hem	derecelik bir eğim göstermektedir. SİS-1						
SİS-1 hem de SİS-2 profillerinin olduğu	profilinin olduğu yerdeki anakaya daha						
kısımlarda ters faylanma belirtileri	masif SİS-2 profilinin olduğu yerdeki						
görülmektedir. Elektrik verilere göre ortam	anakayaya göre daha sağlam veya az						
sismik verileri destekleyecek nitelikte	çatlaklı yapıdadır. Elektrik verilerine göre						
olmakla beraber yaklaşık 20-50 ohm-m lik	yaklaşık 30-70 ohm.m özdirençli kısımlar						
özdirenç değişimlerinin çatlaklar arası kil	büyük ihtimalle çatlaklar arası sızıntı su						
veya su muhtevasından kaynaklandığı	veya kısmen nemli kil muhtevasından						
düşünülmektedir. Elektrik verilerine göre	kaynaklanmaktadır. Elektrik verilerine						
yeraltı suyu belirtisi görülmemiştir.	göre yeraltı suyu belirtisi görülmemiştir.						

Jeofizik verilere göre her iki alan katı atık depolama için uygun görülmektedir.

GÜMÜŞH	ANE İLİ								
Kazantaş	Yenice								
Sismik parametrelere göre yüzeyden 7 metre	Sismik parametrelere göre yüzeyden								
derinliğe kadar orta-sıkı karakterli bir zemin	ortalama 16 metre derinliğe kadar orta-sıkı								
yapısı görülmektedir. Bu derinlikten sonra	karakterli zemin yapısı görülmektedir. Bu								
oldukça sıkı ve sağlam birimler yer	derinlikten sonra oldukça sıkı-katı zemin								
almaktadır (Sondaj verilerine göre Kiltaşı-	veya kaya birimler yer almaktadır (Sondaj								
Marn). Bu sağlam birimin topografyası	verilerine göre andezit). Elektrik verilerine								
oldukça değişkendir. SİS-1 profilinin 35-40	göre 10-30 ohm.m özdirençli görüntülerin								
metreleri arasında örtülü bir süreksizlik	su içeriği yüksek killi birimler olduğu ve								
belirtisi vardır. ERT-2 kesitinde görülen 40-	ERT-2 kesitine göre ise bu birimler hattın								
70 ohm.m'lik görüntüler muhtemelen	sonuna doğru kalınlaşmaktadır.								
ortamdaki killi birimlerin nemlenmesinden									
kaynaklanmaktadır. Aynı kesit üzerinde									
görülen 2 yüksek özdirençli kısmın (beyaz									
dairesel alan ile gösterilen) muhtemelen									
boşluk veya blok kaya kütlesi olduğu									
düşünülmektedir.									
Her iki alanda su ve killi birim muhtevasının y	yüksek olmasından dolayı katı atık depolama								
alanı açısından jeoteknik önlemlerin (ö	özellikle su drenajı) mutlaka alınması								

gerekmektedir.

BAYBU	RT İLİ
Merkez	Balkaynak
Sismik parametrelere göre 10 metre	Sismik ve elektrik ölçümlerden önce açılan
derinliğe kadar ortam sıkı-katı özellik	sondaj kuyuları birbirine yakın (~ 40m)
göstermektedir. Bu derinlikten sonraki	olmasından dolayı her iki sondaj kuyusu
birimler tipik kaya yapısı göstermektedir ve	tek bir profilin içinde kalmıştır. Dolayısı
masif karakterdedirler. Elektrik verilerine	ile her bir sondaj için ayrı ayrı sismik ve
göre derine doğru özdirenç değerlerinin	elektrik ölçümler alınmamıştır. Sondaj
azalım göstermesi kil içeriği ile ilişkili	konumları sadece bu bölge için ERT kesiti
olmadığı düşünülmektedir. Bununla birlikte	üzerinde gösterilmiştir.
bu azalımın nedeni kayaçlar içerisindeki	Sismik parametrelere göre 7 metreye kadar
iletken minareller ve/veya mevsimsel sızıntı	zayıf dayanımlı ve az-sıkı bir zemin
suları ile ilişkili olabilir.	karakteri görülmüştür. Özellikle 2.5-7
	metreler arasında P dalga hızının 1500
	m/sn, S dalga hızının ise 280 m/sn gibi
	düşük bir değerde olması ve aynı zamanda
	ERT kesitinde de bu seviyeler arası
	özdirencin 15-30 ohm.m 'lerde olması,
	burada suya doygun killi birimlerin
	olduğunu işaret etmektedir. Yaklaşık 7
	metreden sonra anakayanın ayrışmış kısmı
	veya iyi sıkışmış birimler görülmektedir.
	Bununla birlikte ERT kesitinde yaklaşık 17
	metrelerden sonra muhtemel temel kaya
	olabilecek birim yer almaktadır.
Jeofizik verilere göre Bayburt Merkez alanı	katı atık depolama için uygundur. Ancak

Jeofizik verilere göre Bayburt Merkez alanı katı atık depolama için uygundur. Ancak Balkaynak mevkiinde yeraltı suyu varlığı ihtimalinin yüksek olması, bu alanın katı atık depolama açısından uygun olmadığını göstermektedir.

ARTVİN İLİ

Murgul

Her iki sismik profilin olduğu alanda yüzeyde çok ince bir killi birim yer almaktadır. Bu birimlerin altında ortalama 8 metreye kadar muhtemelen kırıklı-çatlaklı kaya birimleri yer almaktadır. Bu seviyenin altında ise çok sağlam ve masif karakterli kaya birimler mevcuttur. ERT-1 kesitinde 20-35 ohm.m 'lik görüntülerin muhtemelen su içerikli killi birimleri göstermektedir. Ölçüm alanının eğimi dikkate alındığında bu birim eğim yönünde kayma eğilimi gösterebilir (Potansiyel heyelan tehlikesi). Bununla birlikte kesitin 40 ile 60 metreleri arasında yer alan dışbükey görüntünün muhtemelen eski bir heyelanın topuğu veya eğim aşağı akan molozik malzemenin biriktiği yer olduğu düşünülmektedir. Buna karşılık ERT-2 kesitine göre anakaya derinliği yüzeye oldukça yakındır ve bu durum sismik sonuçlar ile uyumludur.

Profil-1 alanı potansiyel heyelan tehlikesi taşıdığından katı atık depolama alanı için risk teşkil etmektedir. Buna karşılık profil-2 alanı jeofizik veriler açısından uygundur.

4. KAYNAKLAR

- Alptekin, Ö., 1973. Focal Mechanism of Earthquakes in Western Turkey and Their Tectonic Implications, Ph.D. Thesis, New Mexico Inst. of Mining and Tech., Soccoro, New Mexico.
- Alptekin, Ö., 1978. Türkiye ve Çevresindeki Depremlerde Magnitüd-Frekans Bağıntıları ve Deformasyon Boşalımı, Doçentlik Tezi, K.T.Ü., Trabzon.
- Alsan, E., Tezuçan, L. ve Bath, M., 1975. An Earthquake Catalogue for Turkey for The Interval 1913-1970, Report Kandilli Obs., İstanbul and Uppsala Univ., Sweden.
- Ambraseys, N. N., 1970. Some characteristic features of the Anatolian fault zone, *Tectonophysics*, 9, 143-165.
- Ambraseys, N.N. ve Jacson, J.A., 1981. Earthquake Hazard and Vulnerability in the Northeastern Mediterranean: The Corinth Earthquake Sequence of February-March 1981, Disaster 5, 355-368.
- Aydın, 2016. Zaman ve Magnitüd Kestirilebilir Model ile Türkiye'de Uzun Dönem Deprem Kestirimi, Yüksek Lisans Tezi, K.T.Ü. Fen Bilimleri Enstitüsü, Trabzon.
- Ayhan, E., Alsan, E., Sancaklı, N. ve Üçer, S.B., 1987. Türkiye ve Dolayları Deprem Kataloğu 1881-1980, B.Ü. Kandilli Rasathanesi Gök ve Yer Bilimleri Araştırma ve Uygulama Merkezi, İstanbul.
- Bektaş, O., Yılmaz, C., Taslı, K., Akdağ, K., ve Özgür, S., 1995, Cretaceous Rifting of the Eastern Pontide Carbonate Platform (NE Turkey): The Formation of Carbonates Breccias and Turbidites as Evidences of Drowned Platform, Geologia, V. 57, n.1-2, 233 -244.
- Bowles, J.E., 1984, Physical and Geotechnical Properties of Soils, McGraw-Hill.
- Dewey, J.W., 1976. Seismicity of Northern Anatolia, Bull. Seism. Soc. Am., 66, 843-868.
- Erdik, M. ve Eren, K., 1983. Attenuation of intensities for earthquakes associated with the North Anatolian Fault, Middle East Technical University, Earthquake Research Center, Ankara.
- Erdik, M., Demircioğlu, K., Beyen, K. et al., 2014. May 01, 2014 Bingöl (Turkey) Earthquake Priliminary Report. Bogazici University, Kandilli Observatory and Earthquake Research Institute Istanbul Turkey.
- Ergin, K., Güçlü, U. ve Uz, Z., 1967. Türkiye ve Civarının Deprem Kataloğu (M.S. 11 yılından 1964 sonuna kadar), İ.T.Ü. Maden Fakültesi Arz Fiziği Enstitüsü, 24, İstanbul.

- Eyüboğlu,Y., Bektaş, O. ve Pul, D., 2007, Mid-Cretaceous Olistostromal Ophiolitic Melange Developed in the Back-Arc Basin of the Eastern Pontide Magmatic Arc (NE Turkey), International Geology Reviews, Vol.49, No:12, 1103-1126.
- Gardner, G.H.F., Gardner, L.W. ve Gregory, A.R., 1974. Formation Velocity and Density the Diagnostic Basics for Stratigraphic Traps, Geophysics, 39,777-780.
- Gençoğlu, S., 1972. Kuzey Anadolu Fay Hattının Sismisitesi ve Bu Zon Üzerindeki Sismik Risk Çalışmaları, Kuzey Anadolu Fayı ve Deprem Kuşağı Sempozyumu, M.T.A. Enstitüsü, Ankara.
- Gündoğdu, O. ve Altınok, Y., 1986. Türkiye ve Çevresi Deprem Veri Seti 1900-1986, İ.Ü. Mühendislik Fak., Jeofizik Müh. Böl. İstanbul.
- Gürpınar, A., 1977. Deprem Mühendisliğine Giriş, T.C. İmar ve İskan Bakanlığı Deprem Araştırma Enstitüsü Başkanlığı, Ankara.
- Gutenberg, B. ve Richter, C.F., 1954. Seismicity of the Earth and Related Phenomena, Second Printed, Princeton University Press, Princeton.
- Güven, İ.H., 1993, Doğu Pontidlerin 1/25 000 ölçekli jeolojisi ve komplikasyonu, MTA, Ankara, (yayımlanmamış).
- İnan, E., 1998, Sözlü görüşme: (Özmen, B., 2001, Kastamonu İlinin Depremselliği ve Deprem Tehlikesi, 54. Türkiye Jeoloji Kurultayı 7-10 Mayıs, TMMOB Jeoloji Mühendisleri Odası, Ankara)
- Kallberg, K.T. ve Cornell, C.A., 1969. Seismic risk in Southern California, Research Report MIT, Department of Civil engineering, Boston.
- Karnik, V., 1968. Seismicity of the European Area, D. Reidel Publ. Com., Dordreed, Holland.
- Karnik, V., 1969. Seismicity of the European Area, Part 1, D. Reidel Publ. Co., Dordrecht, Holland.
- Keçeli, A., 2012. Uygulamalı Jeofizik, JFMO Eğitim Yayınları No.18, 2. Baskı, Ankara.
- Kenar, Ö., Osmanşahin, İ. ve Özer, M.F., 1996. Seismicity and Tectonics of Eastern Anatolia, Bulletin of IISEE, 30, 59-76.
- Ketin, İ., 1976. San Andreas ve Kuzey Anadolu Fayları Arasında Bir Karşılaştırma, Türkiye Jeoloji Kurumu Bülteni, 19, 2.
- Ketin, İ., 1977. Genel Jeoloji, Cilt-1, İ.T.Ü. Maden Fakültesi Yayını, İstanbul.
- Lomnitz, C. ve Epstein, B., 1966. A Model fort he Occurrence of Large Earthquakes, Nature, 211, 954-956.
- Lomnitz, C.,1973. A Statistical Argument for the Existence of Discontinuity in Some Subduction Zones, J. Geophys. Res. 78, 2612-2615.
- McKenzie, D., 1972. Active Tectonics of the Mediterranean Region, Geophys. J.R. Astr. Soc., 30, 109-185.
- Merz, H.A. ve Cornell, C.A., 1973. Aftershocks in Engineering Seismic Risk Analysis, Research Report R73-25, Dep. of Civil Engineering, M.I.T., Cambridge, Mass.
- Midorikawa, S., 1987. Prediction of Isoseismal Map in the Kanto Plain due to Hypothetical Earthquake, Journal of Structural Eng. 33B, 43-48
- Osmanşahin, İ., 1983. Güneydoğu Anadolu'nun Depremselliği, Yüksek Lisans Tezi, K.T.Ü. Fen Bilimleri Enstitüsü, Trabzon.
- Osmanşahin, I., Ekşi, F., Alptekin, Ö., 1986. Doğu Anadolu ve Kafkasya Bölgesinin Depremselliği ve Aktif Tektoniği, Deprem Araştırma Bülteni, 13, 52, 5-40.
- Öcal, N., 1968. Türkiye'nin Sismisitesi ve zelzele Coğrafyası (1950-1960 yılları için Türkiye Zelzele Kataloğu), M.E.B. İst. Kandilli Rasathanesi, Sismoloji Yayınları, İstanbul.
- Özer, M.F., 1983. Kuzey Anadolu Fayı'nın Doğu Kesiminin Depremselliği, Yüksek Lisans Tezi, K.T.Ü. Fen Bilimleri Enstitüsü, Trabzon.
- Papazachos, B.C. and Comminakis, P.E., 1982. A Catalogue of Earthquake in Greece and Surrounding Area for The Period 1901-1980, Univ. Of Thessaloniki, Geophys. Lab., 5, Greece.
- Pınar, N. ve Lahn, E., 1952. Türkiye Depremleri İzahlı Kataloğu, Bayındırlık Bakanlığı, 96.
- Reid, H. F., 1910. The mechanics of the California earthquake of April 18, 1906, Report of the State Earthquake Investigative Committee, Carnegie Institute, Washington DC.
- Sayıl, N., 2014, Evaluation of the seismicity for the Marmara region with statistical approaches, Acta Geodaet. et Geophys., vol. 49, pp. 265-281.
- Shah, H.C. ve M. Movassate, 1975, Seismic Risk Analysis of California State Water Project, Proc. Of Fifth European Conf. On Earthquake Engineering, **2**, 156.
- Shlien, S. ve Toksöz, M.N., 1970. A Branching Poisson Markov Model of Earthquake Occurrences, Geophys. J. R. Astr. Soc., 42, 49-59.
- Soysal, H., Sipahioğlu, S., Kolçak, D. ve Altınok, Y., 1981. Türkiye ve Çevresinin Tarihsel Deprem Kataloğu, Tübitak, TBAG 341, Ankara.
- Tabban, A. ve Gençoğlu, S., 1975. Deprem ve parametreleri, Deprem Araştırma Enstitüsü Bülteni, 11, 7-83.
- Tuksal, İ., 1976. Seismicity of the North Anatolia Fault System in the Domain of Space, Time and Magnitude, M.S. Thesis, Saint-Louis University, Saint-Louis, Missouri.
- Watkins, J. S., Walters, L.A. and Godson, R.H., 1972. Dependence of in-situ compressional wave velocity on porosity, Geophysics, 37, 29-35.

Weeks, J., Lockner, D. and Byerlee, J., 1978. Change in b-values During Movement on Cut Surfaces in Granite, Bull. Seism. Soc. Am., 68, 333-341.

(KOERI) <u>http://www.koeri.boun.edu.tr/sismo/2/deprem-bilgileri/tarihsel-depremler/</u>)

5. EKLER

SİSMİK VE ELEKTRİK VERİLERİN TOPLANDIĞI ARAZİLERDEN GÖRÜNTÜLER

Samsun İli Arazi Fotoğrafları

Ordu İli Arazi Fotoğrafları

Giresun İli Arazi Fotoğrafları

Trabzon İli Arazi Fotoğrafları

Gümüşhane İli Arazi Fotoğrafları

Bayburt İli Arazi Fotoğrafları

Artvin İli Arazi Fotoğrafları

